Multicamera Human Re-Identification based on Covariance Descriptor


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Human re-identification is a crucial component of security and surveillance systems, smart environments and robots. In this paper a novel selective covariance-based method for human re-identification in video streams from multiple cameras is proposed. Our method, which includes human localization and human classification stages, is called selective covariance-based because before classifying the object using covariance descriptors (in this case the classes are the different people being re-identified) we extract (selection) specific regions, which are definitive for the class of objects we deal with (people). In our case, the region being extracted is the human head and shoulders. In the paper new feature functions for covariance region descriptors are developed and compared to basic feature functions, and a mask, filtering out the most of the background information from the region of interest, is proposed and evaluated. The use of the proposed feature functions and mask significantly improved the human classification performance (from 75% when using basic feature functions to 94.6% accuracy with the proposed method), while keeping computational complexity moderate.

作者简介

V. Devyatkov

Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: deviatkov@comtv.ru
俄罗斯联邦, Moscow

A. Alfimtsev

Bauman Moscow State Technical University

Email: deviatkov@comtv.ru
俄罗斯联邦, Moscow

A. Taranyan

Bauman Moscow State Technical University

Email: deviatkov@comtv.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018