Texture classification using partial differential equation approach and wavelet transform


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Textures and patterns are the distinguishing characteristics of objects. Texture classification plays fundamental role in computer vision and image processing applications. In this paper, texture classification using PDE (partial differential equation) approach and wavelet transform is presented. The proposed method uses wavelet transform to obtain the directional information of the image. A PDE for anisotropic diffusion is employed to obtain texture component of the image. The feature set is obtained by computing different statistical features from the texture component. The linear discriminant analysis (LDA) enhances separability of texture feature classes. The features obtained from LDA are class representatives. The proposed approach is experimented on three gray scale texture datasets: VisTex, Kylberg, and Oulu. The classification accuracy of the proposed method is evaluated using k-NN classifier. The experimental results show the effectiveness of the proposed method as compared to the other methods in the literature.

Авторлар туралы

P. Hiremath

Department of Computer Science (MCA)

Email: rohiniabmath@gmail.com
Үндістан, Hubli, Karnataka, 580031

Rohini Bhusnurmath

Department of P.G. Studies and Research in Computer Science

Хат алмасуға жауапты Автор.
Email: rohiniabmath@gmail.com
Үндістан, Kalaburagi, Karnataka, 585106

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017