Renewal Function under Prefailure Lives Distributed as a Mixture of n Exponential Distributions: Obtaining the Parameters of Mixtures Using the Method of Moments
- Авторы: Fedotova I.M.1, Vaynshtein V.I.1, Tsibul’skii G.M.1, Vaynshtein Y.V.1
-
Учреждения:
- Institute of Space and Information Technologies
- Выпуск: Том 48, № 3 (2019)
- Страницы: 275-282
- Раздел: Automation and Control in Mechanical Engineering
- URL: https://journals.rcsi.science/1052-6188/article/view/194251
- DOI: https://doi.org/10.3103/S105261881903004X
- ID: 194251
Цитировать
Аннотация
This paper deals with the problems of the theory of reliability of technical systems for the case when the prefailure lives of the restored (replaced) elements are distributed as a mixture of distributions. For a simple renewal process, when the prefailure lives are distributed as a mixture of exponential distributions, a method for obtaining the renewal function (average number of failures in the range from 0 to t) is presented. For the case n = 3, its explicit formula is written out. The case of n = 2 was considered in [1]. For mixtures of two and three distributions, such as exponential, Erlang, Rayleigh, and Maxwell distributions, an algorithm to obtain point estimates of the unknown parameters of the mixture in an explicit form is presented. In this work, the studies begun in [1, 2] are continued.
Ключевые слова
Об авторах
I. Fedotova
Institute of Space and Information Technologies
Автор, ответственный за переписку.
Email: firim@mail.ru
Россия, Krasnoyarsk
V. Vaynshtein
Institute of Space and Information Technologies
Email: firim@mail.ru
Россия, Krasnoyarsk
G. Tsibul’skii
Institute of Space and Information Technologies
Email: firim@mail.ru
Россия, Krasnoyarsk
Yu. Vaynshtein
Institute of Space and Information Technologies
Email: firim@mail.ru
Россия, Krasnoyarsk
Дополнительные файлы
