Parallel Algorithm to Detect Structural Changes in Time Series
- Авторы: Nikol’skii I.M.1, Furmanov K.K.1
-
Учреждения:
- Faculty of Computational Mathematics and Cybernetics, Moscow State University
- Выпуск: Том 27, № 2 (2016)
- Страницы: 247-253
- Раздел: II. Informatics
- URL: https://journals.rcsi.science/1046-283X/article/view/247507
- DOI: https://doi.org/10.1007/s10598-016-9318-1
- ID: 247507
Цитировать
Аннотация
Analysis of long time series is relevant in many current applications. These investigations are usually carried out on multiprocessor computers (supercomputers). However, supercomputer calculations are efficient only if the time-series processing algorithms are sufficiently parallelized. In this article, we propose a parallel algorithm that detects shift points of the time-series mean — a highly important task in many applications. The algorithm breaks the time series into segments and looks for shift points on each segment using a statistical test. The critical values have been calculated for this test. An additional test reduces the number of false detections.
Ключевые слова
Об авторах
I. Nikol’skii
Faculty of Computational Mathematics and Cybernetics, Moscow State University
Автор, ответственный за переписку.
Email: oliv_mail@mail.ru
Россия, Moscow
K. Furmanov
Faculty of Computational Mathematics and Cybernetics, Moscow State University
Email: oliv_mail@mail.ru
Россия, Moscow
Дополнительные файлы
