Using Anisotropic Diffusion in the Multiscale Ridge Detection Method
- Autores: Mamaev N.V.1, Krylov A.S.1
- 
							Afiliações: 
							- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
 
- Edição: Volume 30, Nº 3 (2019)
- Páginas: 191-197
- Seção: I. Numerical Methods
- URL: https://journals.rcsi.science/1046-283X/article/view/247870
- DOI: https://doi.org/10.1007/s10598-019-09446-x
- ID: 247870
Citar
Resumo
A ridge detection algorithm is proposed for tracing blood vessels on images of the ocular fundus. Multiscale non-maximum suppression is applied to the image Laplacian. The multiscale algorithm exploits the pyramidal fine structure similarly to the SIFT method. Anisotropic diffusion is used in preprocessing, which makes it possible to boost the value of the convolution of the Laplacian with the Gaussian on ridge structures. The proposed algorithm has been tested on the ophthalmological image database DRIVE. The proposed preprocessing has substantially improved the ridge detection quality.
Palavras-chave
Sobre autores
N. Mamaev
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: mamaev.nikolay93@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Krylov
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
														Email: mamaev.nikolay93@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					