Convergence of Spectral Decompositions for a Singular Differential Operator with General Boundary Conditions
- 作者: Kritskov L.V.1
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- 期: 卷 30, 编号 4 (2019)
- 页面: 326-339
- 栏目: Article
- URL: https://journals.rcsi.science/1046-283X/article/view/247926
- DOI: https://doi.org/10.1007/s10598-019-09459-6
- ID: 247926
如何引用文章
详细
We investigate the general boundary-value problem for the operator lu = −u′′ + q(x)u , 0 < x < 1, If the complex-valued coefficients q(x) is summable on (0,1), the integral \( {\int}_0^1x\left(1-x\right)\left|q(x)\right| dx \) converges.
The asymptotic solutions of the equation lu = μ2u derived in this article are used to construct the asymptotic spectrum of the problem, to classify the boundary conditions, and to prove theorems asserting that the system of root functions is complete and forms an unconditional basis in L2 (0,1).
作者简介
L. Kritskov
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: kritskov@cs.msu.ru
俄罗斯联邦, Moscow
补充文件
