The role of positron emission tomography combined with computed tomography in the diagnosis and evaluation of treatment effectiveness of non-small cell lung cancer


如何引用文章

全文:

详细

Single photon emission computed tomography (SPECT) with the use of various tumor-tropic radiopharmaceutical preparations (RFP) has shown its effectiveness in the identification of tumor process in the lungs and metastatic lesions of mediastinal lymph nodes. In lung cancer such RFPs as Technetium-99m methoxy isobutyl isonitrile (MIBI) I) and 99mTc-depreotid got the largest traction. Increasingly frequently for the initial assessment of the prevalence ofprimary non-small cell lung cancer (NSCLC) there was used positron emission tomography combined with computed tomography (PET/CT) with 2-[18F]Fluoro-2-deoxy-d-glucose ([18F]FDG). The combined PET/CT image consider metabolic and morphological data, that allows to localize precisely the dissemination of the process and is used for the confirmation of the stage, detection of metabolically active extrathoracic lymph nodes, including those of the standard size (<8 mm), and other manifestations of the metastatic process. PET/CT with 18F-FDG is superior to other non-invasive diagnostic methods in the detection of mediastinal lymph node lesions and remote metastases in bones, adrenal glands, liver and soft tissues. This allows to perform the most accurate staging of NSCLC. Thus, according to the data of a number of authors after a whole series of diagnostic tests, additional metastases are detected with PET/CT in 5-29% ofpatients. According to the results of PET/CT the stage of the disease can be changed in 27-62% ofpatients, and the treatment strategy - in 19-52% of cases. In addition, there was proved the important role of PET/CT in the evaluation of the effectiveness of the treatment of NSCLC. Studies have shown that the performance of PET/CT after chemotherapy and/or radiation therapy permits to obtain auxiliary prognostically significant information indicating to the progression-free survival. In addition to the assessment of results of neoadjuvant chemotherapy in NSCLC, PET/CT with 18F-FDG has shown its importance in the monitoring of tumor process in the treatment with targeted agents, such as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Thus, PET/CT plays an important role in the primary diagnosis and early assessment of the effectiveness of treatment of NSCLC, having the highest sensitivity and specificity.

作者简介

Nadezhda Meshcheryakova

N.N. Blokhin Russian Cancer Research Center

Email: mdnadya@gmail.com
roentgenologist of the Department of positron emission tomography of the Research Institute of Clinical and Experimental Radiology Moscow, 115478, Russian Federation

M. Dolgushin

N.N. Blokhin Russian Cancer Research Center

Moscow, 115478, Russian Federation

M. Davydov

N.N. Blokhin Russian Cancer Research Center

Moscow, 115478, Russian Federation

K. Laktionov

N.N. Blokhin Russian Cancer Research Center

Moscow, 115478, Russian Federation

A. Odzharova

N.N. Blokhin Russian Cancer Research Center

Moscow, 115478, Russian Federation

D. Nevzorov

N.N. Blokhin Russian Cancer Research Center

Moscow, 115478, Russian Federation

N. Eremin

N.N. Blokhin Russian Cancer Research Center

Moscow, 115478, Russian Federation

参考

  1. Ferlay J., Shin H.R., Bray F., Forman D., Mathers C., Parkin D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer. 2010; 127: 2893-917.
  2. Tsim S., O’Dowd C.A., Milroy R., Davidson S. Staging of non-small cell lung cancer (NSCLC): A review. Respir. Med. 2010; 104: 1767-74.
  3. Zhou Q., Suzuki K., Anami Y., Oh S., Takamochi K. Clinicopathologic features in resected subcentimeter lung cancer e status of lymph node metastases. Interact. Cardiovasc. Thorac. Surg. 2010; 10: 53-7.
  4. Toloza E.M., Harpole L., McCrory D.C. Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003; 123: 137S-46S.
  5. Shim S.S., Kyung S.L. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005; 236: 1011-9.
  6. Xing N., Cai Z., Zhao S., Yang Li, Xu B., Wang F. The use of CT perfusion to determine microvessel density in lung cancer: comparison with FDG-PET and pathology. Clin. J. Cancer Res. 2011; 23 (2): 118-22.
  7. Gallagher F.A. An introduction to functional and molecular imaging with MRI. Clin. Radiol. 2010; 65: 557-66.
  8. Qi L.P., Zhang X.P., Tang L., Li J., Sun Y.S., Zhu G.Y. Using diffusion-weighted MR imaging for tumor detection in the collapsed lung: a preliminary study. Eur. Radiol. 2009; 9: 333-41.
  9. Nakayama J., Miyasaka K., Omatsu T., Onodera Y., Terae S., Matsuno Y. et al. Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative assessment with diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient. J. Comput. Assist. Tomogr. 2010; 34 (1): 1-8.
  10. Ohno Y., Koyama H., Onishi Y., Takenaka D., Nogami M., Yoshikawa T. et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment-utility for wholebody diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology. 2008; 248: 643-54.
  11. Chin A.Y., Kyung M.S., Kyung S.L. et al. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole body MR imaging. Radiology. 2008; 248: 632-42.
  12. Cronin P., Dwamena B.A., Kelly A.M., Carlos R.C. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008: 246: 772-82.
  13. Danielsson R., Baath M., Svensson L. et al. Imaging of regional lymph node metastases with 99mTc-depreotide in patients with lung cancer. Eur. J. Nucl. Med. Mol. Imag. 2005; 32 (8): 925-31.
  14. Chaitanya R.D. Molecular imaging of pulmonary cancer and inflammation. Proc. Am. Thorac. Soc. 2009; 6: 464-8.
  15. Yap C.S., Czernin J., Fishbein M.C., Cameron R.B., Schiepers C., Phelp M.E., Webe W.A. Evaluation of thoracic tumors with 18f-fluorothymidine and 18ffluorodeoxyglucose-positron emission tomography. Chest. 2006; 129: 393-401.
  16. Gould M.K., Kuschner W.G. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with nonsmall-cell lung cancer: a meta- analysis. Ann. Intern. Med. 2003; 139: 879-92.
  17. Pozo-Rodriguez F., Martin de Nicolas J.L., Sánchez-Nistal M.A., Maldonado A., García de Barajas S., Calero-García R. et al. Accuracy of helical computed tomography and [18F]fluorodeoxyglucose positron emission tomography for identifying lymph node mediastinal metastases in potentially resectable nonsmall cell lung cancer. J. Clin. Oncol. 2005; 23 (33): 8348-56.
  18. Sahiner I., Vural G.U. Positron emission tomography/computerized tomography in lung cancer. Quant. Imag. Med. Surg. 2014; 4 (3): 195-206.
  19. National Cancer Comprehensive Network.www.nccn.org.
  20. Bakheet S.M., Saleem M., Powe J., Al-Amro A., Larsson S.G., Mahassin Z. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin. Nucl. Med. 2000; 25: 273-8.
  21. Bradley J., Bae K., Choi N., Forster K., Siegel B.A., Brunetti J.et al. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int. J. Radiat. Oncol. Biol. Phys. 2012; 82: 435-41.
  22. Gould M.K., Maclean C.C., Kuschner W.G., Rydzak C.E., Owens D.K. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. J.A.M.A. 2001; 285: 914-24.
  23. Darling G.E., Maziak D.E., Inculet R.I., Gulenchyn K.Y., Driedger A.A., Ung Y.C. et al. Positron emission tomography-computed tomography compared with invasive mediastinal staging in non-small cell lung cancer: results of mediastinal staging in the early lung positron emission tomography trial. J. Thorac. Oncol. 2011; 6: 1367-72.
  24. Schrevens L., Lorent N., Dooms C., Vansteenkiste J. The role of PET scan in diagnosis, staging, and management of non-small cell lung cancer. Oncologist. 2004; 9: 633-43.
  25. Silvestri G.A., Gonzalez A.V., Jantz M.A., Margolis M.L., Gould M.K., Tanoue L.T. et al. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143: 211S-50S.
  26. Cho A.R., Lim I., Na I.I., Choe D.H., Park J.Y., Kim B.I. et al. Evaluation of adrenal masses in lung cancer patients using F-18 FDG PET/CT. Nucl. Med. Mol. Imag. 2011; 45: 52-8.
  27. Hsia T.C., Shen Y.Y., Yen R.F. et al. Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99m methylene diophosphate bone scan to detect bone metastases in patients with non-small cell lung cancer. Neoplasma. 2002; 49: 267-71.
  28. De Wever W., Bruyeer E., Demaerel P., Wilms G., Coolen J., Verschakelen J. Staging of lung cancer. Do we need a diagnostic CT of the brain after an integrated PET/CT for the detection of brain metastases? JBR-BTR. 2010; 93: 71-6.
  29. Yi C.A., Shin K.M., Lee K.S., Kim B.T., Kim H., Kwon O.J. et al. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology. 2008; 248: 632-42.
  30. Stroobants S.G., D’Hoore I., Dooms C. et al. Additional value of whole-body fluorodeoxyglucose positron emission tomography in the detection of distant metastases of non-small-cell lung cancer. Clin. Lung Cancer. 2003; 4: 242-7.
  31. Schmücking M., Baum R.P., Griesinger F. et al. Molecular whole-body cancer staging using positron emission tomography: consequences for therapeutic management and metabolic radiation treatment planning. Recent Results Cancer Res. 2003; 162: 195-202.
  32. Hicks R.J., Kalff V., MacManus M.P., Ware R.E., Hogg A., McKenzie A.F. et al. (18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J. Nucl. Med. 2001; 42: 1596-604.
  33. Schwenzer N.F., Schraml Ch., Müller M., Brendle C.A., Sauter A., Spengler W. et al. Pulmonary lesion assessment: Comparison of whole-body hybrid MR/PET and PET/CT imaging - pilot study. Radiology. 2012; 264 (2): 551-8.
  34. Wahl R.L., Jacene H., Kasamon Y., Lodge M.A. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009; 50 (Suppl. 1): 122S-50S.
  35. Ding Q., Cheng X., Yang L., Zhang Q., Chen J., Li T., Shi H. PET/CT evaluation of response to chemotherapy in non-small cell lung cancer: PET response criteria in solid tumors (PERCIST) versus response evaluation criteria in solid tumors (RECIST). J. Thorac. Dis. 2014; 6 (6): 677-83.
  36. van Ruychevelt V., Garcia C., Meert A.P. et al. Positron emission tomography with 18F-FDG and cancer response to chemotherapy. Rev. Mal. Respir. 2011; 28: 618-25.
  37. Yamamoto Y., Nishiyama Y., Monden T., Sasakawa Y., Ohkawa M., Gotoh M. et al. Correlation of FDG-PET findings with histopathology in the assessment of response to induction chemoradiotherapy in non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imag. 2006; 33: 140-7.
  38. Decoster L., Schallier D., Everaert H., Nieboer K., Meysman M., Neyns B., De Mey J. Complete metabolic tumour response, assessed by 18-fluorodeoxyglucose positron emission tomography (18FDG-PET), after induction chemotherapy predicts a favourable outcome in patients with locally advanced non-small cell lung cancer (NSCLC). Lung Cancer. 2008; 62: 55-61.
  39. van Elmpt W., Ollers M., Dingemans A.M., Lambin P., De Ruysscher D. Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J. Nucl. Med. 2012; 53: 1514-20.
  40. O’Brien M.E., Myerson J.S., Coward J.I., Puglisi M., Trani L., Wotherspoon A. et al. A phase II study of 18F-fluorodeoxygluc ose PET-CT in non-small cell lung cancer patients receiving erlotinib (Tarceva); objective and symptomatic responses at 6 and 12 weeks. Eur. J. Cancer. 2012; 48: 68-74.
  41. Hellwig D., Groschel A., Graeter T.P., Hellwig A.P., Nestle U., Schafers H.J. et al. Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imag. 2006; 33: 13-21.
  42. Mankoff D.A., Shields A.F., Krohn K.A. PET imaging of cellular proliferation. Radiol. Clin. N. Am. 2005; 43: 153-67.
  43. Yamamoto Y., Nishiyama Y., Kimura N., Ishi-kawa S., Okuda M., Bandoh S. et al. Comparison of (18) F-FLT PET and (18) F-FDG PET for preoperative staging in non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imag. 2008; 35: 236-45.
  44. Yap C.S., Czernin J., Fishbein M.C., Cameron R.B., Schiepers C., Phelps M.E., Weber W.A. Evaluation of thoracic tumors with 18F-fluorothymidine and 18Ffluorodeoxyglucose-positron emission tomography. Chest. 2006; 129: 393-401.
  45. KyoichiKaira, Noboru Oriuchi, Noriaki Sunaga, Tamotsu Ishizuka, Kimihiro Shimizu, Nobuyuki Yamamoto. Review article. A systematic review of PET and biology in lung cancer. Am. J. Transl. Res. 2011; 3 (4): 383-91.
  46. Everitt S.J., Ball D.L., Hicks R.J., Callahan J., Plumridge N., Collins M. et al. Differential 18F-FDG and 18F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for NSCLC. J. Nucl. Med. 2014. 55 (7): 1069-74.
  47. O’Donoghue J.A., Zanzonico P., Pugachev A., Wen B., Smith-Jones P., Cai S. et al. Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu (II)-diacetyl-bis (N4-methylthiosemi-carbazone) positron emission tomography: Comparative study featuring microPET imaging, Po2 probe measurement, autoradiogra-phy, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int. J. Radiat. Oncol. Biol. Phys. 2005; 61: 1493-502.
  48. Evans S.M., Koch C.J. Prognostic significance of tumor oxygenation in humans. Cancer Lett. 2003; 195: 1-16.
  49. Dehdashti F., Mintun M.A., Lewis J.S., Bradley J., Govindan R., Laforest R. et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur. J. Nucl. Med. Mol. Imag. 2003; 30: 844-50.
  50. Wan W., Guo N., Pan D., Yu C., Weng Y., Luo S. et al. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J. Nucl. Med. 2013; 54: 691-8.

版权所有 © Eco-Vector, 2016


 


##common.cookie##