Perspectives for antitumor vaccines application

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this article, we reviewed the works devoted to one of the promising areas in the immunotherapy of oncological diseases — tumor-specific vaccines based on immunocompetent cells. The most promising, effective and safe methods of cellular vaccination against cancer are presented based on data from clinical trials for the period 2016–2023, which are sorted in the article by the origin of the active component into non-cellular (vaccines based on oncolytic viruses, bacteria, nucleic acids, peptides and in-situ) and cellular (dendritic, T-effector, natural killer cells) immunotherapeutic approaches. Cancer vaccines based on personalized neo-antigenic dendritic cells have promising anti-tumor effects in clinical practice. Dendritic-based vaccines have a number of advantages, one example being the ability to activate both innate and adaptive immunity, as well as to develop long-term immunological memory against recurrence of tumors. DCs are the most professional and consistent antigens and are more effective in activating resting T cells. The review provides the most up-to-date information on cancer vaccines, as well as an analysis of the types of cancer vaccines, using both local and international sources. The conclusion of this brief review is the wide variety of types of tumor-specific vaccines and their rapid improvement.

作者简介

Irina Nikolaeva

North-Eastern Federal University named after M.K. Ammosov

编辑信件的主要联系方式.
Email: dyimovochka1992@yandex.ru
ORCID iD: 0000-0002-8691-9303
SPIN 代码: 2717-7453

Researcher, Laboratory of Medical Biotechnologies

俄罗斯联邦, 36 Kulakovskogo street, 677027 Yakutsk

Aitalina Golderova

North-Eastern Federal University named after M.K. Ammosov

Email: hoto68@mail.ru
ORCID iD: 0000-0002-6739-9453
SPIN 代码: 7868-9925
Scopus 作者 ID: 55323055100
Researcher ID: AAP-1638-2020

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, 36 Kulakovskogo street, 677027 Yakutsk

Andrey Egorov

North-Eastern Federal University named after M.K. Ammosov

Email: 291219942014@mail.ru
ORCID iD: 0000-0003-4610-7105
SPIN 代码: 7387-3990

postgraduate student, research engineer, laboratory of medical biotechnologies

俄罗斯联邦, 36 Kulakovskogo street, 677027 Yakutsk

Radomir Gotovtsev

North-Eastern Federal University named after M.K. Ammosov

Email: radomirgotovtsev@gmail.com
ORCID iD: 0009-0003-6978-3939
SPIN 代码: 3195-6682
Scopus 作者 ID: 0009-0003-6978-3939

master's student

俄罗斯联邦, 36 Kulakovskogo street, 677027 Yakutsk

Ivan Troev

North-Eastern Federal University named after M.K. Ammosov

Email: ysumed@yandex.ru
ORCID iD: 0000-0001-9782-8565
SPIN 代码: 3750-7480

Senior Researcher, Laboratory of Medical Biotechnologies

俄罗斯联邦, 36 Kulakovskogo street, 677027 Yakutsk

Kseniya Tayurskaya

North-Eastern Federal University named after M.K. Ammosov

Email: eilovi@yandex.ru
ORCID iD: 0009-0001-0218-817X
SPIN 代码: 1967-5411

Research Engineer, Laboratory of Medical Biotechnology

俄罗斯联邦, 36 Kulakovskogo street, 677027 Yakutsk

参考

  1. Liu J, Fu M, Wang M, et al. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. Journal of Hematology & Oncology. 2022;15:28. doi: 10.1186/s13045-022-01247-x
  2. Fritah H, Rovelli R, Chiang CL, Kandalaft LE. The current clinical landscape of personalized cancer vaccines. Cancer Treatment Reviews. 2022;106. doi: 10.1016/j.ctrv.2022.102383
  3. Goyvaerts C, Breckpot K. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. J Immunol Res. 2015;2015. doi: 10.1155/2015/785634
  4. Bastin DJ, Montroy J, Kennedy MA, et al. Safety and efficacy of autologous cell vaccines in solid tumors: a systematic review and meta-analysis of randomized control trials. Scientific reports. 2023;13:1–13. doi: 10.1038/s41598-023-29630-9
  5. Moiseenko VM. Vozmozhnosti vaktsinoterapii melanomy kozhi. Practical oncology. 2001;4(8):58–64. (In Russ).
  6. Feola S, Russo S, Martins B, et al. Peptides-Coated Oncolytic Vaccines for Cancer Personalized. Medicine. Frontiers in Immunology. 2022;13. doi: 10.3389/fimmu.2022.826164
  7. Hemminki О, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. Journal of Hematology & Oncology. 2020;13. doi: 10.1186/s13045-020-00922-1
  8. Mondal M, Guo J, He P, et al. Recent advances of oncolytic virus in cancer therapy. Human Vaccines & Immunotherapeutics. 2020;16(10):1–14. doi: 10.1080/21645515.2020.1723363
  9. Omid H, Rubina I, Puzanov I. Intratumoral Immunotherapy-Update 2019. The Oncologist. 2020;25(3):423–438. doi: 10.1634/theoncologist.2019-0438
  10. Ferrucci PF, Pala L, Conforti F, et al. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers. 2021;13(6). doi: 10.3390/cancers13061383
  11. Robinson C, Xu MM, Nair SK, et al. Oncolytic viruses in melanoma. Front Biosci. 2022;27(2):63. doi: 10.31083/j.fbl2702063
  12. Forbes N. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10:785–794. doi: 10.1038/nrc2934
  13. Chen L, Qin H, Zhao R, et al. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Sci Transl Med. 2021;13(601). doi: 10.1126/scitranslmed.abc2816
  14. Yu X, Lin C, Yu J, et al. Bioengineered Escherichia coli Nissle 1917 for tumour-targeting therapy. Microbial Biotechnology. 2019;13(3):629–636. doi: 10.1111/1751-7915.13523
  15. Toso JF, Gill VJ, Hwu P, et al. Phase I Study of the Intravenous Administration of Attenuated Salmonella typhimurium to Patients with Metastatic Melanoma. Journal of Clinical Oncology. 2002;20(1):142–152. doi: 10.1200/JCO.20.1.142
  16. Chen W, Wang Y, Qin M, et al. Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano. 2018;12(6):5995–6005. doi: 10.1021/acsnano.8b02235
  17. Agrawal N, Bettegowda C, Cheong I, et al. Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci USA. 2004;101(42):15172–15177. doi: 10.1073/pnas.0406242101
  18. Lobo N, Brooks NA, Zlotta AR, et al. 100 years of Bacillus Calmette–Guérin immunotherapy: from cattle to COVID-19. Nat Rev Urol. 2021;18:611–622. doi: 10.1038/s41585-021-00481-1
  19. Larsen ES, Joensen UN, Poulsen AM, et al. Bacillus Calmette-Guérin immunotherapy for bladder cancer: a review of immunological aspects, clinical effects and BCG infections. APMIS. 2020;128(2):92–103. doi: 10.1111/apm.13011
  20. Cardillo F, Bonfim M, da Silva Vasconcelos Sousa P, et al. Bacillus Calmette-Guérin Immunotherapy for Cancer. Vaccines (Basel). 2021;9(5):1–15. doi: 10.3390/vaccines9050439
  21. Vandeborne L, Pantziarka P, Nuffel V, et al. Repurposing Infectious Diseases Vaccines Against Cancer. Frontiers in Oncology. 2021;11:120. doi: 10.3389/fonc.2021.688755
  22. Giaccone G, Debruyne C, Felip E, et al. Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer. Journal of Clinical Oncology. 2005;23(28):6854-6864. doi: 10.1200/JCO.2005.17.18
  23. Ylösmäki E, Fusciello M, Martins B, et al. Novel personalized cancer vaccine platform based on Bacillus Calmette-Guèrin. The Journal for ImmunoTherapy of Cancer. 2021;9(7):1–13. doi: 10.1136/jitc-2021-002707
  24. Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells. 2020;9(9):1–53. doi: 10.3390/cells9092061
  25. Jahanafrooz Z, Baradaran B, Mosafer J, et al. Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today. 2020;25(3):552–560. doi: 10.1016/j.drudis.2019.12.003
  26. Baldueva IA. Protivoopukholevye vaktsiny. Practical oncology. 2003;4:157–166. (In Russ).
  27. Dyukalova MB. Development of peptide vaccines for active immunotherapy of breast cancer associated with HER-2 oncoprotein hyperproduction. Vestnik RONTs im. N.N. Blokhina RAMN. 2012;23(1):19–26. (In Russ).
  28. Hueman MT, Dehqanzada ZA, Novak TE, et al. Phase I clinical trial of a HER-2/neu peptide (E75) vaccine for the prevention of prostate-specific antigen recurrence in high-risk prostate cancer patients. Clinical Cancer Research. 2005;11:7470–7479. doi: 10.1158/1078-0432.CCR-05-0235
  29. Ramanathan RK, Lee KM, McKolanis J, et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunology, Immunotherapy. 2005;54:254–264. doi: 10.1007/s00262-004-0581-1
  30. Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer. 2012;76:138–143. doi: 10.1016/j.lungcan.2011.11.012
  31. Akhtar NH, Pail O, Saran A, Tyrell L, Tagawa ST. Prostate-specific membrane antigen-based therapeutics. Advances in Urology. 2012;2012:9. doi: 10.1155/2012/973820
  32. Hammerich L, Binder A, Brody JD. In situ vaccination: Cancer immunotherapy both personalized and off-the-shelf. Molecular Oncology. 2015;9(10):1966–1981. doi: 10.1016/j.molonc.2015.10.016
  33. Zinchenko AI, Shchekolova AS, Birichevskaya LL. In situ antitumor vaccination. In: Kolomiets EI, Lobanok AG, editors. Microbial biotechnologies: fundamental and applied aspects: Collection of scientific papers. Volume 10. Minsk: Belarusian Science; 2018. (In Russ).
  34. Okada H, Takahashi K, Yaku H, et al. In situ vaccination using unique TLR9 ligand K3-SPG induces long-lasting systemic immune response and synergizes with systemic and local immunotherapy. Scientific Reports. 2022;12:2132. doi: 10.1038/s41598-022-05702-0
  35. Bouzid R, Peppelenbosch M, Buschow S. Opportunities for Conventional and In Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers. Cancers. 2020;12(5):1121. doi: 10.3390/cancers12051121
  36. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nature Reviews Cancer. 2012;12(4):265–277. doi: 10.1038/nrc3258
  37. Schadendorf D, Ugurel S, Schuler-Thurner B, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Annals of Oncology. 2006;17(4):563–570. doi: 10.1093/annonc/mdj138
  38. Nair SK, Morse M, Boczkowski D, et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Annals of Surgery. 2002;235(3):540–549. doi: 10.1097/00000658-200203000-00026
  39. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England Journal of Medicine. 2010;363(5):411–422. doi: 10.1056/NEJMoa1001294
  40. Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014;15(7):e257–267. doi: 10.1016/S1470-2045(13)70585-0
  41. Al Saihati HA. Overview of Dendritic Cell Vaccines as Effective Approaches in Cancer Immunotherapy. Bahrain Medical Bulletin. 2021;43:737–746.
  42. Gu YZ, Zhao X, Song XR. Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacol Sin. 2020;41:959–969. doi: 10.1038/s41401-020-0415-5
  43. Baldueva IA, Nekhaeva TP, Protsenko SA, et al. Dendritic cell vaccines in immunotherapy of patients with solid tumors: textbook for doctors and students in the system of higher and additional professional education. Saint Petersburg; 2020. (In Russ).
  44. Duarte A. da S.S., Zangirolami AB, Santos I, et.al. Production of dendritic cell vaccines using different methods with equivalent results: Implications for emerging centers. Hematology, Transfusion and Cell Therapy. 2022;1379(22):1–6. doi: 10.1016/j.htct.2022.11.006
  45. Abdi K, Thomas LM, Laky K, et al. Bone Marrow–Derived Dendritic Cell Cultures from RAG−/− Mice Include IFN-γ–Producing NK Cells. Immunohorizons. 2020;4(7):415–419. doi: 10.4049/immunohorizons.2000011
  46. Pham V, Nguyen S, Pham P. Production of functional dendritic cells from mouse bone marrow. Biomedical Research and Therapy. 2014;1(4):126–132.
  47. Kumar J, Kale V, Limaye L. Umbilical cord blood-derived CD11c+ dendritic cells could serve as an alternative allogeneic source of dendritic cells for cancer immunotherapy. Stem Cell Res Ther. 2015;6:184. doi: 10.1186/s13287-015-0160-8
  48. Mu Y, Wang W, Xie J, et al. Efficacy and safety of cord blood-derived dendritic cells plus cytokine-induced killer cells combined with chemotherapy in the treatment of patients with advanced gastric cancer: a randomized Phase II study. Onco Targets Ther. 2016;9:4617–4627. doi: 10.2147/OTT.S107745
  49. de Haar C, Plantinga M, Blokland NJ, et al. Generation of a cord blood-derived Wilms Tumor 1 dendritic cell vaccine for AML patients treated with allogeneic cord blood transplantation. Oncoimmunology. 2015;4(11):e1023973. doi: 10.1080/2162402X
  50. Mackall CL, Rhee EH, Read EJ, et al. A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clinical Cancer Research. 2008;14(15):4850–4858. doi: 10.1158/1078-0432.CCR-07-4065
  51. Chia WK, Teo M, Wang WW, et al. Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Molecular Therapy. 2014;22(1):132–139. doi: 10.1038/mt.2013.242
  52. Laetsch TW, Maude SL, Balduzzi A, et al. Tisagenlecleucel in pediatric and young adult patients with Down syndrome-associated relapsed/refractory acute lymphoblastic leukemia. Leukemia. 2022;36:1508–1515. doi: 10.1038/s41375-022-01550-z
  53. Manickam C, Sugawara S, Reeves RK. Friends or foes? The knowns and unknowns of natural killer cell biology in COVID-19 and other coronaviruses in July 2020. PLOS Pathogens. 2020;16(8):e1008820. doi: 10.1371/journal.ppat.1008820
  54. Chu J, Gao F, Yan M, et al. Natural killer cells: a promising immunotherapy for cancer. Journal of Translational Medicine. 2022;20:240. doi: 10.1186/s12967-022-03437-0
  55. Sakamoto N, Ishikawa T, Kokura S, et al. Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. Journal of Translational Medicine. 2015;13:277. doi: 10.1186/s12967-015-0632-8
  56. Feifeng W, Min X, Marady H, et al. Natural Killer Cell-Derived Extracellular Vesicles: Novel Players in Cancer Immunotherapy. Frontiers in Immunology. 2021;12. doi: 10.3389/fimmu.2021.658698
  57. Clinicaltrials.gov [Internet]. Rockville (MD): Clinical research studies and information about their results. C2000 — [cited 2023 Jun 21]. Available from: https://clinicaltrials.gov

版权所有 © Eco-Vector, 2022


 


##common.cookie##