INFLUENCE OF CHRONIC NEUROGENIC PAIN ON DYNAMICS OF ENDOTHELIN-1 LEVEL AND COMPONENTS OF NO-SYSTEM DURING MELANOMA B16/F10 GROWTH


Cite item

Full Text

Abstract

Chronic neurogenic pain is a pathogenic factor triggering mechanisms of homeostasis disfunction. As chronic neurogenic pain has been found to affect the biological features of B16/F10 melanoma, the purpose of the study was to determine the levels of endothelin-1 and components of the NO-system in mice during the growth of transplantable B16/F10 melanoma with chronic pain. Methods. The study included 64 female mice. B16/F10 melanoma was transplanted under the skin of the back to animals of the main group 2 weeks after the sciatic nerve ligation. Levels of endothelin-1, NOS-2, NOS-3, L-arginine, citrulline, total nitrite, nitrotyrosine and ADMA were determined by ELISA in the intact skin and in tumor tissues. Results. The dynamics of the studied parameters in tumor growth with and without chronic pain was different. Increased levels of endothelin-1 in the skin and in tumor tissues, stably elevated levels of NO-synthases in the tumor and stably elevated ADMA levels with their decrease by week 3 of the growth were observed in the tumor growth with pain. Conclusions. Chronic pain can contribute to the development of the immune tolerance to tumor antigens in the skin. Conditions are formed that both facilitate the survival of tumor cells and contribute to the further development of melanoma. The dynamics of activity of endothelin-1 and NO systems can promote stimulation of the epithelial-mesenchymal transition, enhance tumor invasion and hemangio- and lymphangiogenesis. Changes in the ADMA inhibitor levels in the tumor growth with chronic pain may indicate a more subtle control of the NO level providing increased melanoma invasiveness.

About the authors

O. I Kit

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russia

I. M Kotieva

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russia

E. M Frantsiyants

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russia

Ekaterina I. Surikova

Rostov Research Institute of Oncology

Email: super.gormon@ya.ru
MD, PhD, Senior Researcher at Laboratory of Malignant tumor pathogenesis study, Rostov Research Institute of Oncology, 344037, Rostov-on-Don, Russian Federation 344037, Rostov-on-Don, Russia

I. V Kaplieva

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russia

V. A Bandovkina

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russia

L. K Trepitaki

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russia

Ju. A Pogorelova

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russia

References

  1. Данилов А.Б., Давыдов О.С. Эпидемиология нейропатической боли. Ж. Боль. 2007; 17 (4): 12-16.
  2. Яхно Н.Н., Кукушкин М.Л., Давыдов О.С., Данилов А.Б., Амелин А.В., Куликов С.М. Результаты Российского эпидемиологического исследования распространенности нейропатической боли, ее причин и характеристик в популяции амбулаторных больных, обратившихся к врачу-неврологу. Ж. Боль. 2008; 18 (3): 24-32.
  3. Worldwide palliative care alliance (WPCA); World Health Organization. 2015. www.who.int/nmh/Global_Atlas_of_Palliative_ Care.pdf
  4. Paice J.A., Bell R.F., Kalso E.A., Soyannwo O.A. Cancer Pain. From Molecules to Saffering. IASP Press. Seattle; 2010.
  5. Кукушкин М.Л. Этиопатегенетические принципы лечения хронической боли. Русский мед. журнал. 2007; 15 (10): 827-32.
  6. Кит О.И., Франциянц Е.М., Котиева И.М., Каплиева И.В., Трепитаки Л.К., Бандовкина В.А. и др. Некоторые механизмы повышения злокачественности меланомы на фоне хронической боли у самок мышей. Российский журнал боли. 2017; 53 (2): 14-20.
  7. Saleh A., Stathopoulou M.G., Dadé S., Ndiaye N.C., Azimi-Nezhad M., Murray H. et al. Angiogenesis related genes NOS3, CD14, MMP3 and IL4R are associated to VEGF gene expression and circulating levels in healthy adults. BMC Med Genet. 2015. doi: 10.1186/s12881-015-0234-6.
  8. Lankhorst S., Danser A.H., van den Meiracker A.H. Endothelin-1 and antiangiogenesis. Am. J. Physiol Regul. Integr. Comp. Physiol. 2016, 310 (3):230-4. doi: 10.1152/ajpregu.00373.2015.
  9. Smith T.P., Haymond T., Smith S.N., Sweitzer S.M. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain. Journal of pain research. 2014; (7): 531-4.
  10. Yang Y., Zhang J., Liu Y., Zheng Y., Bo J., Zhou X. et al. Role of nitric oxide synthase in the development of bone cancer pain and effect of L-NMMA. Mol. Med. Rep. 2016, 13(2):1220-1226. doi: 10.3892/mmr. 2015.4647.
  11. Koschembahr A.M. von, Swope V.B., Starner R.J., Abdel-Malek Z.A. Endothelin-1 protects human melanocytes from UV-induced DNA damage by activating JNK and p38 signaling pathways. Exp. Dermatol. 2015. doi: 10.1111/exd.12638.
  12. Willey K.E. Davenport A.P. Nitric oxide-medulation of the endothelin-1 signaling pathway in the human cardiovascular system. Brit. J. Pharmacology. 2001; 132: 213-20.
  13. Pirtskhalaishvili G., Nelson J.B. Endothelium-derived factors as paracrine mediators of prostate cancer progression. Prostate. 2000; 44 (1): 77-87.
  14. Lalich M., McNeel D.G., Wilding G., Liu G. Endothelin receptor antagonists in cancer therapy. Cancer Invest. 2007; 25 (8): 785-94.
  15. Rosanò L., Spinella F., Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat.Rev. Cancer. 2013а; 13: 637-51.
  16. Davenport A.P. Hyndman K.A., Dhaun N., Southan C. et al. Endothelin. Pharmacological reviews. 2016; 68 (2): 357-418.
  17. Bagnato A., Rosan Õ.L, Spinella F., Di Castro V., Tecce R., Natali P.G. Endothelin B receptor blockade inhibits dynamic of cell interactions and communications in melanoma cell progression. Cancer Research. 2004; 64: 1436-43.
  18. Murase D. Cooperation of endothelin-1 signaling with melanosomes plays a role in developing and/or maintaining human skin hyperpigmentation Biol. Open. 2015; 4 (10): 1213-21.
  19. Irani S., Salajegheh A., Smith R.A., Lam A.K. A review of the profile of endothelin axis in cancer and its management. Crit. Rev. Oncol. Hematol. 2014; 89: 314-21.
  20. Papanikolaou S., Bravou V., Papadaki H., Gyftopoulos K. The role of the endothelin axis in promoting epithelial to mesenchymal transition and lymph node metastasis in prostate adenocarcinoma. Urol. Ann. 2017, 9(4):372-379. doi: 10.4103/UA.UA_43_17.
  21. Wu M.H., Huang C.Y., Lin J.A., Wang S.W., Peng C.Y., Cheng H.C., Tang CH. Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene. 2014; 33 (13): 1725-35. doi: 10.1038/onc.2013.109.
  22. Shi L., Zhou S.S., Chen W.B., Xu L. Functions of endothelin-1 in apoptosis and migration in hepatocellular carcinoma. Exp. Ther. Med. 2017, 13(6):3116-3122. doi: 10.3892/etm.2017.4314.
  23. Nelson J.B., Udan M.S., Guruli G., Pflug B.R. Endothelin-1 inhibits apoptosis in prostate cancer. Neoplasia. 2005; 7 (7): 631-7.
  24. Lankhorst S., Kappers M.H., van Esch J.H., Danser A.H., van den Meiracker A.H. Hypertension during vascular endothelial growth factor inhibition: focus on nitric oxide, endothelin-1, and oxidative stress. Antioxid. Redox Signal. 2014; 20 (1): 135-45. doi: 10.1089/ars.2013.5244.
  25. Vahora H., Khan M.A., Alalami U., Hussain A. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention. J. Cancer Prev. 2016; 21 (1): 1-12. doi: 10.15430/JCP.2016.21.1.1. Epub 2016 Mar 30.
  26. Lahdenranta J., Hagendoorn J., Padera T.P., Hoshida T., Nelson G., Kashiwagi, S. Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis. Cancer Res. 2009; 69: 2801-8.
  27. Ridnour L.A., Windhausen A.N., Isenberg J.S., Yeung N., Thomas D.D., Vitek M.P. Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc. Natl. Acad. Sci. U S A. 2007; 104: 16898-903.
  28. Mazzoni A., Bronte V., Visintin A., Spitzer J.H., Apolloni E., Serafini P. et al. Myeloid suppressor lines inhibit T-cell responses by an NO-dependent mechanism. J. Immunol. 2002; 168: 689-95.
  29. Nagaraj S., Gupta K., Pisarev V., Kinarsky L., Sherman S., Kang L. et al. Altered recognition of antigen is a mechanism of CD8+ T-cell tolerance in cancer. Nat. Med. 2007; (13): 828-35.
  30. Rodriguez P.C., Quiceno D.G., Ochoa A.C. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007; 109: 1568-73.
  31. Viola A., Bronte V. Metabolic mechanisms of cancer-induced inhibition of immune responses. Semin. Cancer Biol. 2007; 17(4): 309-16.

Copyright (c) 2018 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies