ОПИОИД-ИНДУЦИРОВАННАЯ ГИПЕРАЛГЕЗИЯ У ПАЦИЕНТОВ С ХРОНИЧЕСКИМ БОЛЕВЫМ СИНДРОМОМ ОНКОЛОГИЧЕСКОГО ГЕНЕЗА


Цитировать

Полный текст

Аннотация

Представлен обзор русско- и англоязычных статей в научных базах PubMed, Scopus, Web of Science, eLibrary, посвящённых изучению механизмов возникновения опиоид-индуцированной гипералгезии у пациентов с хроническим болевым синдромом онкологического генеза. Показано значение генетических факторов, предопределяющих развитие опиоид-индуцированной гипералгезии. Показана ключевая роль фармакологических препаратов для купирования хронической боли в условиях имеющейся опиоид-индуцированной гипералгезии.

Об авторах

Ольга Петровна Боброва

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России; КГБУЗ «Красноярский краевой клинический онкологический диспансер им. А. И. Крыжановского»

Email: bop_351971@mail.ru
канд. мед. наук, доцент кафедры фармакологии и фармацевтического консультирования с курсом ПО1, клинический фармаколог2 660022, г. Красноярск, Россия; 660133, г. Красноярск, Россия

Н. А Шнайдер

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России

660022, г. Красноярск, Россия

Ю. А Дыхно

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России; КГБУЗ «Красноярский краевой клинический онкологический диспансер им. А. И. Крыжановского»

660022, г. Красноярск, Россия; 660133, г. Красноярск, Россия

М. М Петрова

ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России

660022, г. Красноярск, Россия

Список литературы

  1. Kenan K., Mack K., Paulozzi L. Trends in prescriptions for oxycodone and other commonly used opioids in the United States, 2000 - 2010. Open Med. 2012; 6(2): 41-7.
  2. Drewes A.M., Jensen R.D., Nielsen L.M., Droney J., Christrup L.L., Arendt-Nielsen L., Riley J., Dahan A. Differences between opioids: pharmacological, experimental, clinical and economical perspectives. Br. J. Clin. Pharmacol. 2012; 75(1): 60-78. doi: 10.1111/j.1365-2125.2012.04317.x
  3. Low Y., Clarke C.F., Huh B.K. Opioid-induced hyperalgesia: a review of epidemiology, mechanisms and management. Singapore Med. J. 2012; 53(5): 357-60.
  4. Yi P., Pryzbylkowski P. Opioid Induced Hyperalgesia. Pain Medicine. 2015; 16: 32-6. doi: 10.1111/pme.12914
  5. Hooten W.M., Mantilla C.B., Sandroni P., Townsend C.O. Associations between heat pain perception and opioid dose among patients with chronic pain undergoing opioid tapering. Pain Med. 2010; 11: 1587-98. doi: 10.1111/j.1526-4637.2010.00962.x
  6. Angst M.S., Clark J.D. Opioid-induced hyperalgesia: A qualitative systematic review. Anesthesiology. 2006; 104: 570-87. PMID: 16508405.
  7. Lee M., Silverman S.M., Hansen H., Patel V.B., Manchikanti L. A comprehensive review of opioid-induced hyperalgesia. Pain Physician. 2011; 14(2): 145-61. PMID: 21412369.
  8. Bannister K., Lee Y.S., Goncalves L., Porreca F., Lai J., Dickenson A.H. Neuropathic plasticity in the opioid and non-opioid actions of dynorphin A fragments and their interactions with bradykinin B2 receptors on neuronal activity in the rat spinal cord. Neuropharmacol. 2014; 85: 375-83. doi: 10.1016/j.neuropharm.2014.06.005
  9. Fletcher D., Martinez V. Opioid-induced hyperalgesia in patients after surgery: A systematic review and a meta-analysis. Br. J. Anaesth. 2014; 112: 991-1004. doi: 10.1093/bja/aeu137
  10. Chu L.F., Dairmont J., Zamora A.K., Young C.A., Angst M.S. The endogenous opioid system is not involved in modulation of opioid -induced hyperalgesia. J. Pain. 2011; 12: 108-15. doi: 10.1016/j.jpain.2010.05.006
  11. Roeckel L.A., Le Coz G.M., Gaveriaux-Ruff C., Simonin F. Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience. 2016; 338:160-82. doi: 10.1016/j.neuroscience.2016.06.029
  12. Shah M., Anwar M.A., Yesudhas D., Krishnan J., Choi S. A structural insight into the negative effects of opioids in analgesia by modulating the TLR4 signaling: an in silico approach. Sci. Rep. 2016; 6: 39271. doi: 10.1038/srep39271
  13. Nicotra L., Loram L.C., Watkins L.R., Hutchinson M.R. Toll-like receptors in chronic pain. Exp. Neurol. 2012; 234: 316-29. doi: 10.1016/j.expneurol.2011.09.038
  14. Jurga A.M., Rojewska E., Piotrowska A., Makuch W., Pilat D., Przewlocka B., Mika J. Blockade of toll-like receptors (TLR2, TLR4) attenuates pain and potentiates buprenorphine analgesia in a rat neuropathic pain model. Neural. Plast. 2016; 2016: 5238730. doi: 10.1155/2016/5238730
  15. Shi X.Q., Zekki H., Zhang J. The role of TLR2 in nerve injury-induced neuropathic pain is essentially mediated through macrophages in peripheral inflammatory response. Glia. 2011; 59(2): 231-41. doi: 10.1002/glia.21093
  16. Kim D., You B., Lim H., Lee S.J. Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury. Mol. Pain. 2011; 7: 74. doi: 10.1186/1744-8069-7-74
  17. Graeber M.B., Streit W.J. Microglia: biology and pathology. Acta Neuropathol. 2010; 119(1): 89-105. doi: 10.1007/s00401-009-0622-0
  18. Hutchinson M.R., Shavit Y., Grace P.M., Rice K.C., Maier S.F., Watkins L.R. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol. Rev. 2011; 63(3): 772-810. doi: 10.1124/pr.110.004135
  19. Doyle H.H., Murphy A.Z. Sex differences in innate immunity and its impact on opioid pharmacology. J. Neurosci. Res. 2017; 95(1-2): 487-99. doi: 10.1002/jnr.23852
  20. Ben Achour S., Pascual O. Glia: the many ways to modulate synaptic plasticity. Neurochem. Int. 2010; 57(4): 440-5. doi: 10.1016/j.neuint.2010.02.013
  21. Eidson L.N., Murphy A.Z. Blockade of toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J. Neurosci. 2013; 33(40): 15952-63. doi: 10.1523/jneurosci.1609-13.2013
  22. Akbari E. The role of cyclo-oxygenase inhibitors in attenuating opioid-induced tolerance, hyperalgesia, and dependence. Med. Hypotheses. 2012; 78(1): 102-6. doi: 10.1016/j.mehy.2011.10.003
  23. Bravo-Hernández M., Cervantes-Durán C., Pineda-Farias J.B., Barragán-Iglesias P., López-Sánchez P., Granados-Soto V. Role of peripheral and spinal 5-HT(3) receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia. Pharmacol. Biochem. Behav. 2012; 101: 246-57. doi: 10.1016/j.pbb.2012.01.013
  24. Lenz H., Raeder J., Draegni T., Heyerdahl F., Schmelz M., Stubhaug A. Effects of COX inhibition on experimental pain and hyperalgesia during and after remifentanil infusion in humans. Pain. 2011; 152(6): 1289-97. doi: 10.1016/j.pain.2011.02.007
  25. Richebé P., Pouquet O., Jelacic S., Mehta S., Calderon J., Picard W., Rivat C., Cahana A., Janvier G. Target-controlled dosing of remifentanil during cardiac surgery reduces postoperative hyperalgesia. J. Cardiothor. Vasc. Anesthesia. 2011; 25 (6): 917-25. doi: 10.1053/j.jvca.2011.03.185
  26. Johnson J.L., Rolan P.E., Johnson M.E., Bobrovskaya L., Williams D.B., Johnson K., Tuke J., Hutchinson M.R. Codeine-induced hyperalgesia and allodynia: investigating the role of glial activation. Transl. Psychiatry. 2014; 4: e482. doi: 10.1038/tp.2014.121
  27. Johnson J.L., Hutchinson M.R., Williams D.B., Rolan P. Medication-overuse headache and opioid-induced hyperalgesia: a review of mechanisms, a neuroimmune hypothesis and a novel approach to treatment. Cephalalgia. 2013; 33(1): 52-64. doi: 10.1177/0333102412467512
  28. Carullo V., Fitz-James I., Delphin E. Opioid-Induced hyperalgesia: a diagnostic dilemma. Journal of Pain & Palliative Care Pharmacotherapy. 2015; 29 (4): 378-84. doi: 10.3109/15360288. 2015.1082006
  29. Von Korff M.R. Long-term use of opioids for complex chronic pain. Best Pract. Res. Clin. Rheumatol. 2013; 27(5): 663-72. doi: 10.1016/j.berh.2013.09.011
  30. Gris P., Gauthier J., Cheng P., Gibson D.G., Gris D. et al. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism. Molecular Pain. 2010; 6: 33. http://www.molecularpain.com/content/6/1/33
  31. Corder G., Tawfik V.L., Wang D., Sypek E.I., Low S.A. et al. Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat. Med. 2017; 23: 164-73. doi: 10.1038/nm.4262
  32. Convertino M., Samoshkin A., Gauthier J., Gold M.S., Maixner W. et al. Mu-opioid receptor 6-transmembrane isoform: a potential therapeutic target for new efective opioids. Prog. Neuropsychopharmacol. Biol. Psychiat. 2015; 62: 61-7. doi: 10.1016/j.pnpbp.2014.11.009
  33. Боброва О.П., Шнайдер Н.А., Зырянов С.К., Модестов А.А. Ассоциация полиморфизма гена опиоидных рецепторов OPRM1 с фенотипическим разнообразием хронического болевого синдрома онкологического генеза. Медицинская генетика. 2017; 16(6): 3-8.
  34. Roeckel L.-A., Utard V., Reiss D., Mouheiche J., Maurin H., Robé A., Audouard E., Wood J.N., Goumon Y., Simonin F., Gaveriaux-Ruff C. Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide. Sci. Rep. 2017; 7: 10406. doi: 10.1038/s41598-017-11120-4
  35. Gessi S., Borea P.A., Bencivenni S., Fazzi D., Varani K., Merighi S. The activation of mu-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia. FEBS Lett. 2016; 590(17): 2813-26. doi: 10.1002/1873-3468.12313
  36. Wise H. The roles played by highly truncated splice variants of G protein-coupled receptors. J. Mol. Signal. 2012; 7: 1-13.
  37. Lagerström M.C., Rogoz K., Abrahamsen B., Persson E., Reinius B. et al. VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron. 2010; 68: 529-42. doi: 10.1016/j.neuron.2010.09.016
  38. Fernández-de-las-Peñas C., Fernández-Lao C., Cantarero-Villanueva I., Ambite-Quesada S., Rivas-Martínez I. et al. Catechol-O-methyltransferase genotype (Val158met) modulates cancer-related fatigue and pain sensitivity in breast cancer survivors. Breast Cancer Res. Treat. 2012; 133(2): 405-12. doi: 10.1007/s10549-011-1757-y
  39. Kotlovskiy M.Yu., Pokrovskiy A.A., Kotlovskaya O.S., Osedko A.V., Osedko O.Ya., Titova N.M., Titov V.N., Kotlovskiy Yu.V., Trifonova O.Yu., Dygay A.M. Gen SLCO1B1 v aspekte farmakogenetiki. Sibirskoe meditsinskoe obozrenie. 2015; (1): 5-15. (in Russian) / Котловский М.Ю., Покровский А.А., Котловская О.С., Оседко А.В., Оседко О.Я., Титова Н.М., Титов В.Н., Котловский Ю.В., Трифонова О.Ю., Дыгай А.М. Ген SLCO1B1 в аспекте фармакогенетики. Сибирское медицинское обозрение. 2015; 1: 5-15.
  40. Berta T., Liu Y.-C., Xu Z.-Z., Ji R.-R. Tissue plasminogen activator contributes to morphine tolerance and induces mechanical allody-nia via astrocytic IL-1β and ERK signaling in the spinal cord of mice. Neuroscience. 2013; 247: 376-85. doi: 10.1016/j.neuroscience.2013.05.018
  41. Chen Y., Yang C., Wang Z.J. Ca2+/calmodulin-dependent protein kinase IIα is required for the initiation and maintenance of opioid-induced hyperalgesia. J. Neurosci. 2010; 30 (1): 38-46. doi: 10.1523/jneurosci.4346-09.2010
  42. Liang D.-Y., Zheng M., Sun Y., Sahbaie P., Low S.A. et al. The Netrin-1 receptor DCC is a regulator of maladaptive responses to chro-nic morphine administration. BMC Genomics. 2014; 15: 345. doi: 10.1186/1471-2164-15-345
  43. Oladosu F.A., Conrad M.S., O’Buckley S.C., Rashid N.U. et al. Mu Opioid Splice Variant MOR-1K Contributes to the Development of Opioid-Induced Hyperalgesia. PLoS One. 2015; 10(8): e0135711. doi: 10.1371/journal.pone.0135711
  44. Gaveriaux-Ruff C. Opiate-induced analgesia: contributions from mu, delta and kappa opioid receptors mouse mutants. Curr. Pharm. Des. 2013; 19: 7373-81. PMID: 23448470.
  45. Ellis A., Grace P.M., Wieseler J., Favret J., Springer K. et al. Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury. Brain. Behav. Immun. 2016; 58: 348-56. doi: 10.1016/j.bbi.2016.08.004
  46. Arout C.A., Caldwell M., Rossi G., Kest B. Spinal and supraspinal N-methyl-D-aspartate and melanocortin-1 receptors contribute to a qualitative sex difference in morphine-induced hyperalgesia. Physiol. Behav. 2015; 147; 364-72. doi: 10.1016/j.physbeh.2015.05.006
  47. Forero M., Chan P.S., Restrepo-Garces C.E. Successful reversal of hyperalgesia/myoclonus complex with lowdose ketamine infusion. Pain Pract. 2012; 12(2): 154-8. doi: 10.1111/j.1533-2500.2011.00475.x
  48. Salpeter S.R., Buckley J.S., Bruera E. The use of very-low-dose methadone for palliative pain control and the prevention of opioid hyperalgesia. J. Palliat. Med. 2013; 16(6): 616-22. doi: 10.1089/jpm.2012.0612
  49. Aguado D., Abreu M., Benito J., Garcia-Fernandez J., Gómez de Segura I.A. Effects of naloxone on opoid-induced hyperalgesia and tole-rance to remifentanil under sevoflurane anesthesia in rats. Anesthesio-logy. 2013; 118(5): 1160-9. doi: 10.1097/ALN.0b013e3182887526
  50. Berna C., Kulich R.J., Rathmell J.P. Tapering long-term opioid therapy in chronic noncancer pain: Evidence and recommendations for everyday practice. Mayo. Clin. Proc. 2015; 90: 828-42. doi: 10.1016/j.mayocp.2015.04.003
  51. Mercadante S., Ferrera P., Arcuri E., Casuccio A. Opioid-induced hyperalgesia after rapid titration with intravenous morphine: switching and re-titration to intravenous methadone. Ann. Palliat. Med. 2012; 1(1): 10-3. doi: 10.3978/j.issn.2224-5820.2012.01.02
  52. Monterubbianesi M.C., Capuccini J., Ferioli I., Tassinari D., Sarti D., Raffaeli W. High opioid dosage rapid detoxification of cancer patient in palliative care with the Raffaeli model. J. Opioid Manag. 2012; 8(5): 292-8. doi: 10.5055/jom.2012.0129
  53. Gomes T., Mamdani M.M., Dhalla I.A., Paterson J.M., Juurlink D.N. Opioid dose and drug-related mortality in patients with nonmalignant pain. Arch. Intern. Med. 2011; 171(7): 686-91. doi: 10.1001/archinternmed.2011.117

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2018


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».