LEVELS OF GROWTH FACTORS AND THEIR RECEPTORS IN INTACT AND TUMOR TISSUES OF FEMALE MICE IN DYNAMICS OF THE MALIGNANT MELANOMA GROWTH


Cite item

Full Text

Abstract

The formation and growth of the tumor are accompanied with the development of new vasculature providing the neoplasm with nutrients for its growth and metastasis. Main agents for these processes are VEGF family that can be activated by various ways, including insulin growth factor (IGF) effects, epidermal growth factors (EGF), transforming growth factors (TGF) and fibroblast growth factor (FGF). The study included female C57BL/6 mice (n = 40) with B16/F10 melanoma transplanted subcutaneously. Changes in levels of VEGF-A, VEGF-C, VEGF-D and their receptors R1, R2 in dependence on the activity of IGF-I, IGF-II, EGF and FGF21 were studied by ELISA in tumor, perifocal area and intact tissues in the dynamics of B16/F10 melanoma growth using standard test systems. VEGF-A and VEGF-C were first to be activated in intact tissue of female mice with transplanted tumors, even prior to the tumor formation, which created conditions for the growth and development of the malignant tumor stroma. Later development of B16 melanoma was accompanied by the enhanced expression of VEGF growth factors and receptors in tumor and surrounding tissues. Main factors triggering angiogenesis in all samples included IGF2 and IGF1 which levels in the dynamics of melanoma growth correlated with VEGF-A values in tumor, its perifocal zone and intact tissues, and with VEGF-C in non-malignant tissue. The study demonstrated the multifactor staged activation of neoangiogenesis not only in B16 melanoma tissue but in surrounding and intact tissues as well.

About the authors

O. I Kit

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russian Federation

E. M Frantsiyants

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russian Federation

Valeriya A. Bandovkina

Rostov Research Institute of Oncology

Email: super.gormon@yandex.ru
MD, PhD, Senior Researcher of the Laboratory of Pathogenesis of Malignant Tumors, Rostov-on-Don, 344037, Russian Federation. 344037, Rostov-on-Don, Russian Federation

I. V Kaplieva

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russian Federation

L. K Trepitaki

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russian Federation

L. Ya Rozenko

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russian Federation

N. D Cheryarina

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russian Federation

Yu. A Pogorelova

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russian Federation

A. V Shulga

Rostov Research Institute of Oncology

344037, Rostov-on-Don, Russian Federation

References

  1. Чехонин В.П., Шеин С.А., Корчагина А.А., Гурина О.И. Роль VEGF в развитии неопластического ангиогенеза. Вестник РАМН. 2012; (2): 23-33.
  2. Ferrara N., Gerber H.P., Le Couter J. The biology of VEGF and its receptors. Nature Med. 2003; 9 (6): 669-76.
  3. Wang X., Chen X., Fang J., Yang C. Over expression of both VEGF-A and VEGF-C in gastric cancer correlates with prognosis, and silencing of both is effective to inhibit cancer growth. Int. J. Clin. Exp. Pathol. 2013; 6(4): 586-97.
  4. Capoluongo E., Ameglio F., Zuppi S. Insulin-like growth factor-I and complications of prematurity: Focus on bronchopulmonary dysplasia. Clin. Chem. Lab. Med. 2008; 46: 1061-6.
  5. Roddam A.W., Allen N.E., Appleby P., Key T.J., Ferrucci, Carter H.B. et al. (2008), Insulin like growth factors and their binding proteins, and the risk of prostate cancer: Analysis of individual patient data from 12 prospective studies. Ann. Intern. Med. 2008; 149: 461-71.
  6. Duffy M.J., O,Donovan N., Grown J. Use of molecular markers for predicting therapy response in cancer patients. J. Cancer Treatment Reviews. 2011; 37(2):151-9. doi: 10.1016/j.ctrv.2010.07.004.
  7. Bracher A., Cardona A.S., Tauber S., Fink A.M., Steiner A., Pehamberger H. et al. Epidermal growth factor promotes melanoma lymph node metastasis by acting on tumor lymphangiogenesis. J. Invest. Dermatol. 2013; 133(1): 230-8. DOI: 10.1038 /jid.2012.272. Epub 2012 September 6th.
  8. Akslen L.A., Puntervoll H., Bachmann I.M., Straume O., Vuhahula E., Kumar R., Molven A. Mutation analysis of the EGFR-NRAS-BRAF pathway in melanoma from black Africans and other subgroups of cutaneous melanoma. Melanoma Res. 2008; 18(1): 29-35. doi: 10.1097/CMR.0b013e3282f32517
  9. Annes J.P., Munger J.S., Rifkin D.B. Making sense of latent TGF-beta activation. J. Cell. Sci. 2003; 116: 217-24.
  10. Javelaud D., Alexaki V.I, Mauviel A. Transforming growth factor-BETA in cutaneous melanoma. Pigment Cell Melanoma Res. 2008; 21(2): 123-32. DOI: 10.1111 / j.1755-148X.2008.00450.x
  11. Santos Bernardes S., de Souza-Neto F.P., Melo G.P., Guarnier F.A., Marinello P.C., Cecchini R., Cecchini A.L. Correlation of TGF-β1 and oxidative stress in the blood of patients with melanoma: a clue to understanding melanoma progression? Tumour Biol. 2016; 37(8): 10753-61.
  12. Cantelli G., José L., Rodriguez-Hernandez I., Karagiannis P., Maiques O., Matias-Guiu X. et al. TGF-β-induced transcription Braves Melanoma amoeboid migration and proliferation. Curr. Biol. 2015; 25(22): 2899-914. DOI: 10.1016 / j.cub.2015.09.054. PMCID: PMC4651903
  13. Choi M., Moschetta A., Bookout A.L., Peng L., Umetani M., Holmstrom S.R. et al. Definition of a hormonal basis for filling the gallbladder. Nat. Med. 2006; 12: 1253-5.
  14. Chow M.D.L., Gao J., Qing Y., Zhidan W., Gromada J. Fibroblast growth factor 21 regulates energy metabolism through activation of AMPK-SIRT1-PGC-1alpha pathway. Proc. Nat. Acad. Sci. USA. 2010; 107(28): 12553-8. DOI: 10.1073 / pnas.1006962107 PMCID: PMC2906565
  15. Hori M., Shimizu Y., Fukumoto S. Minireview: fibroblast growth factor-23 in phosphate homeostasis and bone metabolism. Endocrinology. 2011; 152: 4-10.
  16. Feng S., Dakhova O., Creighton C.J., Ittmann M. Endocrine FGF19 fibroblast growth factor promotes the development of prostate cancer. Cancer Res. 2013; 73(8): 2551-62. DOI: 10,1158 / 0008-5472.CAN-12-4108
  17. Франциянц Е.М., Бандовкина В.А., Каплиева И.В., Трепитаки Л.К., Погорелова Ю.А., Черярина Н.Д. Факторы роста эндотелия сосудов и рецепторов в динамике развития перевиваемой меланомы B16/F10. Российский онкологический журнал. 2015; 20(2): 32-7.
  18. Treshchalina E.M., Zhukova O.S., Gerasimova G.K., Andronova N.V., Garin A.M. The guidelines for conducting pre-clinical testing of medicines. M.: Grif i K; Ch.1. 2012: 642-57.
  19. Vartanian A. Signaling pathways in tumor vasculogenic mimicry. Biochemistry. 2012; 77(9): 1044-55.
  20. Zeng Y., Opeskin K., Goad J., Williams T.D. Tumor-Induced Activation of Lymphatic Endothelial Cells via Vascular Endothelial Growth Factor Receptor-2 Is Critical for Prostate Cancer Lymphatic Metastasis. Cancer Res. 2006; 66(1): 9566-75.
  21. He Y., Rajantie I., Ilmonen M., Makinen T., Karkkainen M.J., Haiko P. et al. Preexisting Lymphatic Endothelium but not Endothelial Progenitor Cells Are Essential for Tumor Lymphangiogenesis and Lymphatic Metastasis. Cancer Research. 2004; (64): 3737-40.
  22. Lee S., Safdie F.M., Raffaghello L., Wei M., Madia F., Parrella E., Hwang J., Cohen P. Reduced levels of IGF-I mediates the differential protection of normal and cancer cells in response to the post and improve the chemotherapeutic index. Cancer Res. 2010; 70: 1564-72.
  23. Satyamoorthy K., Li G., Vaidya B., Kalabis J.M. Herlin insulin-like growth factor-I-induced migration of melanoma cells is mediated by IL-8 induction. The growth of the cells are different. 2002; 13: 87-93.
  24. Pollack M. Insulin and insulin-like growth factor-like signaling in neoplasia. Nature Rev. Cancer. 2008; 8: 915-28.
  25. Бабышкина Н.Н., Малиновская Е.А., Стахеева М.Н., Волкоморов В.В., Уфандеев А.А., Слонимская Е.М. Роль трансформирующего ростового фактора TGF-β1 в патогенезе рака молочной железы. Сибирский онкологический журнал. 2010; 6: 42: 63-70.
  26. Humbert L., Ghozlan M., Canaff L., Tian J., Lebrun J.J. Leukemia inhibitory factor (LIF) and p21 mediates tumor TGF-beta-suppressing effects in the skin of human melanoma. BMC Cancer. 2015; 15: 200. DOI: 10,1186/ s12885-015-1177-1
  27. Tan M.R., Wang Y.X., Guo S., Han S.Y., Li H.H., Jin S.F. Prognostic value of plasma and at levels of transforming growth factor beta 1, -2 and -3 in cutaneous melanoma. Mol. Med. Rep. 2015; 11(6): 4508-12. DOI: 10,3892 / mmr.2015.3250. Epub 2015 Jan. 26

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies