Immunosignature - peptide microarray for diagnostic of cancer and other diseases


Cite item

Full Text

Abstract

Biomarkers for preclinical diagnosis of cancer is a valuable tool for detection of malignant tumors at early stages in risk groups and screening healthy people, as well as monitoring disease recurrence after treatment of cancer. It is known that antibodies are produced in response to antigens expressed by tumor cells. Accordingly, the presence of specific antibodies in serum can serve as biomarkers of cancer. Recently developed technology - immunosignature is a highly sensitive method of detection of circulating antibodies using peptide microarrays. In the present review we discuss modern methods of antibody detection, as well as describe the principles and applications of immunosignature in research and clinical practice.

About the authors

Andrei I. Chapoval

Altai State University

Email: andreichapoval@gmail.com
cand. biol. sciences, director of the Russian-American Anti-Cancer Center 656049, Barnaul, Russian Federation

J. B Legutki

Arizona State University

Biodesign Institute, Arizona State University Tempe, AZ 85287, USA

P. Stafford

Arizona State University

Biodesign Institute, Arizona State University Tempe, AZ 85287, USA

A. V Trebukhov

Altai State University

Russian-American Anti-Cancer Center, Altai State University 656049, Barnaul, Russian Federation

S. A Johnston

Arizona State University

Biodesign Institute, Arizona State University Tempe, AZ 85287, USA

Ya. N Shoykhet

Altai State University; Altai State Medical University

Russian-American Anti-Cancer Center, Altai State University 656049, Barnaul, Russian Federation

A. F Lazarev

Altai State University; N.N. Blokhin Russian Cancer Research Center under Russian Academy of Medical Science

Russian-American Anti-Cancer Center, Altai State University; Altai branch of N.N. Blokhin Russian Cancer Research Center under Russian Academy of Medical Science 656049, Barnaul, Russian Federation

References

  1. Давыдов М.И., Аксель Е.М., ред. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. М.: Издательская группа РОНЦ; 2014. ISBN: 5-95340-183-3.
  2. Sawyers C.L. The cancer biomarker problem. Nature. 2008; 452 (7187): 548-52.
  3. Kulasingam V., Diamandis E.P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nature Clin. Pract. Oncol. 2008; 5 (10): 588-99.
  4. Fuzery A.K., Levin J., Chan M.M., Chan D.W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin. Proteom. 2013; 10 (1): 13-25.
  5. Hori S.S., Gambhir S.S. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci. Transl. Med. 2011; 3 (109): 109-116.
  6. Fushiki T., Fujisawa H., Eguchi S. Identification of biomarkers from mass spectrometry data using a “common” peak approach. BMC Bioinform. 2006; 7: 358-68.
  7. Anderson N.L., Ptolemy A.S., Rifai N. The riddle of protein diagnostics: future bleak or bright? Clin. Chem. 2013; 59 (1): 194-7.
  8. Wu X., Molinaro C., Johnson N., Casiano C.A. Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens: implications for systemic autoimmunity. Arthr. and Rheum. 2001; 44 (11): 2642-52.
  9. Fernandez Madrid F. Autoantibodies in breast cancer sera: candidate biomarkers and reporters of tumorigenesis. Cancer Lett. 2005; 230 (2): 187-98.
  10. Desmetz C., Bascoul-Mollevi C., Rochaix P., Lamy P.J., Kramar A., Rouanet P. et al. Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women. Clin. Cancer Res. 2009; 15 (14): 4733-41.
  11. Zhang J.Y., Casiano C.A., Peng X.X., Koziol J.A., Chan E.K., Tan E. M. Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol. Biomarkers Prev. 2003; 12 (2): 136-43.
  12. Zhang J.Y. Tumor-associated antigen arrays to enhance antibody detection for cancer diagnosis. Cancer Detect. Prev. 2004; 28 (2): 114-8.
  13. Chapman C.J., Healey G.F., Murray A., Boyle P., Robertson C., Peek L.J. et al. EarlyCDT®-Lung test: improved clinical utility through additional autoantibody assays. Tumour Biol. 2012; 33 (5): 1319-26.
  14. Li J., Wang L.J., Ying X., Han S.X., Bai E., Zhang Y, Zhu Q. Immunodiagnostic value of combined detection of autoantibodies to tumor-associated antigens as biomarkers in pancreatic cancer. Scand. J. Immunol. 2012; 75 (3): 342-9.
  15. Shan Q., Lou X., Xiao T., Zhang J., Sun H., Gao Y. et al. A cancer/testis antigen microarray to screen autoantibody biomarkers of non-small cell lung cancer. Cancer Lett. 2013; 328 (1): 160-7.
  16. Xie C., Kim H.J., Haw J.G., Kalbasi A., Gardner B.K., Li G. et al. A novel multiplex assay combining autoantibodies plus PSA has potential implications for classification of prostate cancer from non-malignant cases. J. Transl. Med. 2011; 9: 43.
  17. Chapman C.J., Murray A., McElveen J.E., Sahin U., Luxemburger U., Tureci O. et al. Autoantibodies in lung cancer: possibilities for early detection and subsequent cure. Thorax. 2008; 63 (3): 228-33.
  18. Boyle P., Chapman C.J., Holdenrieder S., Murray A., Robertson C. , Wood W.C. et al. Clinical validation of an autoantibody test for lung cancer. Ann. Oncol. 2011; 22 (2): 383-9.
  19. Shi F.D., Zhang J.Y, Liu D., Rearden A., Elliot M., Nachtsheim D. et al. Preferential humoral immune response in prostate cancer to cellular proteins p90 and p62 in a panel of tumor-associated antigens. Prostate. 2005; 63 (3): 252-8.
  20. Piura E., Piura B. Autoantibodies Tailor - Made Panels of to tumor-associated antigens in breast carcinoma. J. Oncol. 2011: 2425.
  21. Heo C.K., Bahk Y.Y, Cho E.W. Tumor-associated autoantibodies as diagnostic and prognostic biomarkers. BMB Rep. 2012; 45 (12): 677-85
  22. Tan H.T., Low J., Lim S.G., Chung M.C. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 2009; 276 (23): 6880-904.
  23. Casiano C.A., Mediavilla-Varela M., Tan E.M. Tumor-associated antigen arrays for the serological diagnosis of cancer. Mol. Cell Proteom. 2006; 5 (10): 1745-59.
  24. Sahin U., Tureci O., Schmitt H., Cochlovius B., Johannes T., Schmits R. et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl. Acad. Sci. USA. 1995; 92 (25): 11 810-3.
  25. Wang X., Yu J., Sreekumar A., Varambally S., Shen R., Giacherio D. et al. Autoantibody signatures in prostate cancer. N. Engl. J. Med. 2005; 353 (12): 1224-35.
  26. Matsutani T., Hiwasa T., Takiguchi M., Oide T., Kunimatsu M., Saeki N. et al. Autologous antibody to src-homology 3-domain GRB2-like 1 specifically increases in the sera of patients with low-grade gliomas. J. Exp. Clin. Cancer Res. 2012; 31: 85.
  27. Gnjatic S., Wheeler C., Ebner M., Ritter E., Murray A., Altorki N.K. et al. Seromic analysis of antibody responses in non-small cell lung cancer patients and healthy donors using conformational protein arrays. J. Immunol. Meth. 2009; 341 (1-2): 50-8.
  28. Kellner R., Lichtenfels R., Atkins D., Bukur J., Ackermann A., Beck J. et al. Targeting of tumor associated antigens in renal cell carcinoma using proteome-based analysis and their clinical significance. Proteomics. 2002; 2 (12): 1743-51.
  29. Caron M., Choquet-Kastylevsky G., Joubert-Caron R. Cancer immunomics using autoantibody signatures for biomarker discovery. Mol. Cell Proteom. 2007; 6 (7): 1115-22.
  30. Grandjean M., Dieu M., Raes M., Feron O. A new method combining sequential immunoaffinity depletion and differential in gel electrophoresis to identify autoantibodies as cancer biomarkers. J. Immunol. Meth. 2013; 396 (1-2): 23-32.
  31. Klade C.S., Voss T., Krystek E., Ahorn H., Zatloukal K., Pummer K. et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics. 2001; 1 (7): 890-8.
  32. Hardouin J., Lasserre J.P., Sylvius L., Joubert-Caron R., Caron M. Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling. Ann. N.Y. Acad. Sci. 2007; 1107: 223-30.
  33. Suzuki A., Iizuka A., Komiyama M., Takikawa M., Kume A., Tai S. et al. Identification of melanoma antigens using a Serological Proteome Approach (SERPA). Cancer Genom. Proteom. 2010; 7 (1): 17-23.
  34. Scanlan M.J., Welt S., Gordon C.M., Chen Y.T., Gure A.O., Stockert E. et al. Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res. 2002; 62 (14): 4041-7.
  35. Hoheisel J.D., Alhamdani M.S., Schroder C. Affinity-based microarrays for proteomic analysis of cancer tissues. Proteom. Clin. Appl. 2013; 7 (1-2): 8-15.
  36. Kroening K., Johnston S.A., Legutki J.B. Autoreactive antibodies raised by self derived de novo peptides can identify unrelated antigens on protein microarrays. Are autoantibodies really autoantibodies? Exp. Mol. Pathol. 2012; 92 (3): 304-11.
  37. Zhong L., Peng X., Hidalgo G.E., Doherty D.E., Stromberg A.J., Hirschowitz E.A. Identification of circulating antibodies to tumor-associated proteins for combined use as markers of nonsmall cell lung cancer. Proteomics. 2004; 4 (4): 1216-25.
  38. Stafford P., Halperin R., Legutki J.B., Magee D.M., Galgiani J., Johnston S.A. Physical characterization of the «immunosignaturing effect». Mol. Cell Proteom. 2012; 11 (4): M111.
  39. Sykes K.F., Legutki J.B., Stafford P. Immunosignaturing: a critical review. Trends Biotechnol. 2013; 31 (1): 45-51.
  40. Legutki J.B., Magee D.M., Stafford P., Johnston S.A. A general method for characterization of humoral immunity induced by a vaccine or infection. Vaccine. 2010; 28 (28): 4529-37.
  41. Hughes A.K., Cichacz Z., Scheck A., Coons S.W., Johnston S.A., Stafford P. Immunosignaturing can detect products from molecular markers in brain cancer. PLoS One. 2012; 7 (7): e40201.
  42. Gutenberg A., Bock H.C., Bruck W., Doerner L., Mehdorn H.M., Roggendorf W. et al. MGMT promoter methylation status and prognosis of patients with primary or recurrent glioblastoma treated with carmustine wafers. Br. J. Neurosurg. 2013; 27 (6): 772-8.
  43. Rankeillor K.L., Cairns D.A., Loughrey C., Short S.C., Chumas P., Ismail A. et al. Methylation-specific multiplex ligation-dependent probe amplification identifies promoter methylation events associated with survival in glioblastoma. J. Neurooncol. 2014; 117 (2): 243-51.
  44. Kukreja M., Johnston S.A., Stafford P. Immunosignaturing microarrays distinguish antibody profiles of related pancreatic diseases. J. Proteomics Bioinform. 2012: S6.
  45. Restrepo L., Stafford P., Johnston S.A. Feasibility of an early Alzheimer’s disease immunosignature diagnostic test. J. Neuroimmunol. 2013; 254 (1-2): 154-60.

Copyright (c) 2014 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies