Targeted NGS panels in cancer: international standards and Russian solutions for personalized medicine
- Authors: Gerashchenko T.S.1, Gervas P.A.1, Ibragimova A.A.1, Zuev A.S.1, Tretyakova M.S.1, Bokova U.A.1, Vorobiev R.S.1, Denisov E.V.1
-
Affiliations:
- Tomsk National Research Medical Center of the Russian Academy of Sciences
- Issue: Vol 30, No 3 (2025)
- Pages: 170-181
- Section: Reviews
- URL: https://journals.rcsi.science/1028-9984/article/view/365999
- DOI: https://doi.org/10.17816/onco690506
- EDN: https://elibrary.ru/UBZCAM
- ID: 365999
Cite item
Abstract
A personalized approach is a priority in the diagnosis and treatment of cancer. Accurate diagnostic tests for assessing the tumor’s molecular characteristics and optimizing the treatment strategy are essential for effective personalized treatment. Multigene NGS panels simultaneously detect a variety of genetic disorders, including single nucleotide substitutions, insertions and deletions, DNA copy number variations, translocations, microsatellite instability, and tumor mutational burden. This is crucial for selecting targeted therapy and immunotherapy, assessing prognosis, and monitoring the progression of cancer. This review discusses the evolution of precision oncology in the 21st century, the possibilities and advantages of NGS in molecular oncology, the technical and analytical characteristics of various multigene NGS panels with both amplification-based and hybridization-based enrichment, and their clinical applications in molecular diagnostics. The review focuses specifically on existing Russian and international NGS technologies. It examines available Russian and international multigene NGS panels, including problems of their application in routine cancer care in Russia.
About the authors
Tatiana S. Gerashchenko
Tomsk National Research Medical Center of the Russian Academy of Sciences
Author for correspondence.
Email: t_gerashchenko@oncology.tomsk.ru
ORCID iD: 0000-0002-7283-0092
SPIN-code: 7900-9700
MD, Cand. Sci. (Medicine)
Russian Federation, TomskPolina A. Gervas
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: pgervas@yandex.ru
ORCID iD: 0000-0003-0051-8814
SPIN-code: 2934-7970
MD, Cand. Sci. (Medicine)
Russian Federation, TomskArina A. Ibragimova
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: arina.budnitskaya@gmail.com
ORCID iD: 0009-0003-1728-0723
SPIN-code: 3726-8132
Russian Federation, Tomsk
Andrey S. Zuev
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: Andrew.zuev@medgenetics.ru
ORCID iD: 0000-0001-9474-9335
SPIN-code: 3235-1754
Russian Federation, Tomsk
Maria S. Tretyakova
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: trremar@mail.ru
ORCID iD: 0000-0002-5040-931X
SPIN-code: 5207-8330
Cand. Sci. (Biology)
Russian Federation, TomskUstinia A. Bokova
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: pushkay@yandex.ru
ORCID iD: 0000-0003-2179-5685
SPIN-code: 3546-0527
Cand. Sci. (Biology)
Russian Federation, TomskRostislav S. Vorobiev
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: tsu@vorobev.su
ORCID iD: 0000-0002-5705-8479
SPIN-code: 3441-8818
Russian Federation, Tomsk
Evgeny V. Denisov
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: d_evgeniy@oncology.tomsk.ru
ORCID iD: 0000-0003-2923-9755
SPIN-code: 9498-5797
Dr. Sci. (Biology)
Russian Federation, TomskReferences
- Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301–304. doi: 10.1056/NEJMp1006304
- Gerashchenko TS, Denisov EV, Litviakov NV, et al. Intratumor heterogeneity: nature and biological significance. Biochemistry (Mosc). 2013;78(11):1201–1215. doi: 10.1134/s0006297913110011 EDN: SLELNR
- Zhong Y, Xu F, Wu J, et al. Application of Next Generation Sequencing in Laboratory Medicine. Ann Lab Med. 2021;41(1):25–43. doi: 10.3343/alm.2021.41.1.25 EDN: YPSTFZ
- Galeș LN, Păun MA, Butnariu I, et al. Next-Generation Sequencing in Oncology-A Guiding Compass for Targeted Therapy and Emerging Applications. Int J Mol Sci. 2025;26(7):3123. doi: 10.3390/ijms26073123 EDN: OFJHLE
- Batra U, Nathany S. Biomarker testing in lung cancer: from bench to bedside. Oncol Rev. 2024;18:1445826. doi: 10.3389/or.2024.1445826 EDN: VCJQBE
- Froyen G, Geerdens E, Berden S, et al. Diagnostic Validation of a Comprehensive Targeted Panel for Broad Mutational and Biomarker Analysis in Solid Tumors. Cancers (Basel). 2022;14(10):2457. doi: 10.3390/cancers14102457 EDN: DGUKQI
- Kroeze LI, de Voer RM, Kamping EJ, et al. Evaluation of a Hybrid Capture-Based Pan-Cancer Panel for Analysis of Treatment Stratifying Oncogenic Aberrations and Processes. J Mol Diagn. 2020;22(6):757–769. doi: 10.1016/j.jmoldx.2020.02.009 EDN: URQACV
- Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023;10(4):1367–1401. doi: 10.1016/j.gendis.2022.02.007 EDN: UIEUZJ
- Scott EC, Baines AC, Gong Y, et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat Rev Drug Discov. 2023;22(8):625–640. doi: 10.1038/s41573-023-00723-4 EDN: SRKWUM
- Zalli D, Mai Z, Ferati E, et al. Advancing Precision Medicine. In: Rezaei N, editor. Cancer Personalized Treatment. Handbook of Cancer and Immunology. Springer; 2025. P:27–57.
- Rulten SL, Grose RP, Gatz SA, Jones JL, Cameron AJM. The future of precision oncology. Int J Mol Sci. 2023;24(16):12613. doi: 10.3390/ijms241612613 EDN: BLQDSC
- Pugh TJ, Bell JL, Bruce JP, et al. AACR Project GENIE: 100,000 Cases and Beyond. Cancer Discov. 2022;12(9):2044–2057. doi: 10.1158/2159-8290.cd-21-1547 EDN: DRHJBJ
- Imyanitov E, Sokolenko A. Molecular diagnostics in clinical oncology: an overview. Explor Med. 2025;6:1001346. doi: 10.37349/emed.2025.1001346 EDN: XYMVKH
- Zhou Z, Li M. Targeted therapies for cancer. BMC Medicine. 2022;20(1):90. doi: 10.1186/s12916-022-02287-3
- Mateo J, Steuten L, Aftimos P, et al. Delivering precision oncology to patients with cancer. Nat Med. 2022;28(4):658–665. doi: 10.1038/s41591-022-01717-2 EDN: RTSYQW
- Tsimberidou AM, Kahle M, Vo HH, et al. Molecular tumour boards — current and future considerations for precision oncology. Nat Rev Clin Oncol. 2023;20(12):843–863. doi: 10.1038/s41571-023-00824-4
- Mosele MF, Westphalen CB, Stenzinger A, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2024;35(7):588–606. doi: 10.1016/j.annonc.2024.04.005 EDN: BEMSHO
- Lyander A, Gellerbring A, Hägglund M, Elhami K, Wirta V. NGS method for parallel processing of high quality, damaged or fragmented input material using target enrichment. PLoS One. 2024;19(5):e0304411. doi: 10.1371/journal.pone.0304411 EDN: IVBSFL
- Vashisht V, Vashisht A, Mondal AK, Woodall J, Kolhe R. From genomic exploration to personalized treatment: next-generation sequencing in oncology. Curr Issues Mol Biol. 2024;46(11):12527–12549. doi: 10.3390/cimb46110744 EDN: IJWJYS
- Kozarewa I, Armisen J, Gardner AF, et al. Overview of Target Enrichment Strategies. Curr Protoc Mol Biol. 2015;112:7.21.1–7.21.23. doi: 10.1002/0471142727.mb0721s112
- Singh RR. Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology. Diagnostics. 2022;12(7):1539. doi: 10.3390/diagnostics12071539 EDN: UZSNPO
- Cheng DT, Mitchell TN, Zehir A, et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J Mol Diagn. 2015;17(3):251–264. doi: 10.1016/j.jmoldx.2014.12.006
- Schenk D, Song G, Ke Y, Wang Z. Amplification of overlapping DNA amplicons in a single-tube multiplex PCR for targeted next-generation sequencing of BRCA1 and BRCA2. PLoS One. 2017;12(7):e0181062. doi: 10.1371/journal.pone.0181062
- Dumur CI., Krishnan R, Almenara JA, et al. Analytical Validation and Clinical Utilization of the Oncomine Comprehensive Assay Plus Panel for Comprehensive Genomic Profiling in Solid Tumors. Journal of Molecular Pathology. 2023;4(2):109–127. doi: 10.3390/jmp4020012 EDN: DGIHBH
- Sahoo OS, Aidasani H, Nayek A, et al. Role of next‐generation sequencing in revolutionizing healthcare for cancer management. MedComm — Future Med. 2024;3:e70001. doi: 10.1002/mef2.70001 EDN: QLOYKK
- Yao J, Zhai Q. A narrative review of cancer molecular diagnostics: past, present, and future. J Bio-X Res. 2022;5(4):145–150. doi: 10.1097/JBR.0000000000000136 EDN: MSGVCQ
- Doig KD, Love CG, Conway T, et al. Findings from precision oncology in the clinic: rare, novel variants are a significant contributor to scaling molecular diagnostics. BMC Med Genomics. 2022;15(1):70. doi: 10.1186/s12920-022-01214-y EDN: OXXKAV
- Mirza M, Goerke L, Anderson A, et al. Assessing the Cost-Effectiveness of Next-Generation Sequencing as a Biomarker Testing Approach in Oncology and Policy Implications: A Literature Review. Value Health. 2024;27(9):1300–1309. doi: 10.1016/j.jval.2024.04.023 EDN: OMERSG
- Jørgensen JT. The current landscape of the FDA approved companion diagnostics. Transl Oncol. 2021;14(6):101063. doi: 10.1016/j.tranon.2021.101063 EDN: DPVJVY
- Ratner M. First multi-gene NGS diagnostic kit approved. Nat Biotechnol. 2017;35(8):699. doi: 10.1038/nbt0817-699
- Shelyakin VA, Linnik SA, Tretyakov DA, et al. Analyses of the effectiveness of molecular genetic testing of patients with cancer on the examples of some subjects of the Russian Federation as the basis for the use of targeted drugs. Bull Natl Res Inst Public Health N.A. Semashko. 2022;(4):30–37. doi: 10.25742/NRIPH.2022.04.006 EDN: XVNQGP
Supplementary files

