Palliative treatment of pancreatic cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pancreatic cancer is one of the most serious problems of modern oncology. In the Russian Federation, pancreatic cancer, along with a fairly small share in the structure of the incidence of malignant neoplasms — 3%, ranks first in annual mortality (68.2%), and is also a nosology with the most unfavorable prognosis among tumors of the gastrointestinal tract. The current standard of first-line therapy is FOLFRINOX (FOLFIRINOX, a combination of 5-fluorouracil (5-FU), leucovorin, irinotecan, and oxaliplatin) or gemcitabine plus albumin-bound nab-paclitaxel.

One of the main obstacles to the action of chemotherapeutic drugs is the microenvironment of fibro-solid stromal tumors, which include pancreatic cancer. In order to potentiate the action of chemotherapy and combat the tumor microenvironment, at the present stage, drugs are being considered for influencing the programmed death 1 (PD-1) gene and cytotoxic T-lymphocyte antigen 4 (CTLA-4). Approximately 10–15% of malignant neoplasms of the pancreas are believed to be associated with hereditary mutations, while all neoplasms have somatic mutations in different combinations of driver genes. One of the most common mutations are BRCA1/BRCA2 gene mutations. Poly-ADP-ribose polymerase inhibitors, like cisplatin, have shown promise as a treatment for tumors with BRCA mutations.

Another subtype of pancreatic cancer is characterized by microsatellite instability. Unlike the above mutations and phenotypes, which affect only a small proportion of patients with pancreatic cancer, mutations in KRAS (Kirsten homologous rat sarcoma viral oncogene) are found in 90–95% of cases of pancreatic malignancy and may be a significant factor in pancreatic tumorigenesis. Another frequently mutating gene for a number of malignancies is ARID1A, which encodes a tumor suppressor protein, a subunit of the SWI/SNF chromatin remodeling complex.

The future of conservative therapy for pancreatic cancer is a complex treatment that includes both chemotherapy and targeted therapy and immunotherapy, the implementation of which is impossible without a deeper study of genetic mutations, molecular mechanisms of invasion and development of pancreatic malignant neoplasms, as well as extensive testing for genetic mutations in the clinical practice of specialized institutions.

About the authors

Alexander E. Tseimakh

Altai State Medical University

Author for correspondence.
Email: alevtsei@rambler.ru
ORCID iD: 0000-0002-1199-3699
SPIN-code: 5795-0530

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Barnaul

Alexander F. Lazarev

Altai State Medical University

Email: lazarev@akzs.ru
ORCID iD: 0000-0003-1080-5294
SPIN-code: 1161-8387

MD, Dr. Sci. (Med.), Professor

Russian Federation, Barnaul

Yakov N. Shoykhet

Altai State Medical University

Email: starok100@mail.ru
ORCID iD: 0000-0002-5253-4325
SPIN-code: 6379-3517

MD, Dr. Sci. (Med.), Professor, Associate Member of Russian Academy of Sciences

Russian Federation, Barnaul

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi: 10.3322/caac.21654
  2. Kaprin AD, Starinskij VV, Shahzadova AO, editors. Sostojanie onkologicheskoj pomoshhi naseleniju Rossii v 2020 godu. Moscow: MNIOI im. P.A. Gercena — filial FGBU «NMIC radiologii» Minzdrava Rossii; 2021. 239 p. (In Russ).
  3. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493–502. doi: 10.1038/s41575-021-00457-x
  4. Chen W, Butler RK, Lustigova E, et al. Validation of the enriching new-onset diabetes for pancreatic cancer model in a diverse and integrated healthcare setting. Dig Dis Sci. 2021;66(1):78–87. doi: 10.1007/s10620-020-06139-z
  5. https://seer.cancer.gov/ [Internet]. Cancer Stat Facts: Pancreatic Cancer. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html
  6. Goggins M, Overbeek KA, Brand R, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):7–17. doi: 10.1136/gutjnl-2019-319352
  7. Overbeek KA, Levink IJM, Koopmann BDM, et al. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut. 2022;71(6):1152–1160. doi: 10.1136/gutjnl-2020-323611
  8. Overbeek KA, Goggins MG, Dbouk M, et al. Timeline of development of pancreatic cancer and implications for successful early detection in high-risk individuals. Gastroenterology. 2022;162(3):772–785.e4. doi: 10.1053/j.gastro.2021.10.014
  9. Canto MI, Kerdisirichairat T, Yeo CJ, et al. Surgical outcomes after pancreatic resection of screening-detected lesions in individuals at high risk for developing pancreatic cancer. J Gastrointest Surg. 2020;24(5):1101–1110. doi: 10.1007/s11605-019-04230-z
  10. Tempero MA, Malafa MP, Al-Hawary M, et al. Pancreatic adenocarcinoma, version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021;19(4):439–457. doi: 10.6004/jnccn.2021.0017
  11. Yu Y, Zheng P, Chen Y, et al. Advances and challenges of neoadjuvant therapy in pancreatic cancer. Asia Pac J Clin Oncol. 2021;17(6):425–434. doi: 10.1111/ajco.13504
  12. Muller PC, Frey MC, Ruzza CM, et al. Neoadjuvant chemotherapy in pancreatic cancer: an appraisal of the current high-level evidence. Pharmacology. 2021;106(3-4):143–153. doi: 10.1159/000510343
  13. Turpin A, El Amrani M, Bachet JB, et al. Adjuvant pancreatic cancer management: towards new perspectives in 2021. Cancers (Basel). 2020;12(12):3866. doi: 10.3390/cancers12123866
  14. Dahan L, Williet N, Le Malicot K, et al. Randomized phase II trial evaluating two sequential treatments in first line of metastatic pancreatic cancer: results of the PANOPTIMOX-PRODIGE 35 trial. J Clin Oncol. 2021;39(29):3242–3250. doi: 10.1200/JCO.20.03329
  15. Petrioli R, Torre P, Pesola G, et al. Gemcitabine plus nab-paclitaxel followed by maintenance treatment with gemcitabine alone as first-line treatment for older adults with locally advanced or metastatic pancreatic cancer. J Geriatr Oncol. 2020;11(4):647–651. doi: 10.1016/j.jgo.2019.08.008
  16. Artamonova EV. Albumin-bound paclitaxel in the treatment of metastatic breast cancer. Journal of Modern Oncology. 2017;19(1):17–23. (In Russ).
  17. Grimont A, Leach SD, Chandwani R. Uncertain beginnings: acinar and ductal cell plasticity in the development of pancreatic cancer. Cell Mol Gastroenterol Hepatol. 2022;13(2):369–382. doi: 10.1016/J.JCMGH.2021.07.014
  18. Oyama H, Tada M, Takagi K, et al. Long-term risk of malignancy in branch-duct intraductal papillary mucinous neoplasms. Gastroenterology. 2020;158(1):226–237.e225. doi: 10.1053/j.gastro.2019.08.032
  19. Noë M, Niknafs N, Fischer CG, et al. Genomic characterization of malignant progression in neoplastic pancreatic cysts. Nat Commun. 2020;11(1):4085. doi: 10.1038/s41467-020-17917-8
  20. Raghavan S, Winter PS, Navia AW, et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell. 2021;184(25):6119–6137.e6126. doi: 10.1016/j.cell.2021.11.017
  21. Hayashi A, Fan J, Chen R, et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nature Cancer. 2020;1(1):59–74. doi: 10.1038/s43018-019-0010-1
  22. Topham JT, Karasinka JM, Lee MKC, et al. Subtype discordant pancreatic ductal adenocarcinoma tumors show intermediate clinical and molecular characteristics. Clin Cancer Res. 2021;27(1):150–157. doi: 10.1158/1078-0432.CCR-20-2831
  23. Herting CJ, Karpovsky I, Lesinski GB. The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions. Cancer Metastasis Rev. 2021;40(3):675–689. doi: 10.1007/s10555-021-09988-w
  24. Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer — clinical challenges and opportunities. Nat Rev Clin Oncol. 2020;17(9):527–540. doi: 10.1038/s41571-020-0363-5
  25. Helms E, Onate MK, Sherman MH. Fibroblast heterogeneity in the pancreatic tumor microenvironment. Cancer Discov. 2020;10(5):648–656. doi: 10.1158/2159-8290.CD-19-1353
  26. Francescone R, Vendramini-Costa D, Franco-Barraza J, et al. Netrin G1 promotes pancreatic tumor genesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 2021;11(2):446–479. doi: 10.1158/2159-8290.CD-20-0775
  27. Heumann T, Azad N. Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer Metastasis Rev. 2021;40(3):837–862. doi: 10.1007/s10555-021-09999-7
  28. De Jesus-Acosta A, Sugar EA, O’Dwyer PJ, et al. Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. Br J Cancer. 2020;122(4):498–505. doi: 10.1038/s41416-019-0683-3
  29. Steele NG, Biffi G, Kemp SB, et al. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer Res. 2021;27(7):2023–2037. doi: 10.1158/1078-0432.CCR-20-3715
  30. Banh RS, Biancur DE, Yamamoto K, et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell. 2020;183(5):1202–1218.e1225. doi: 10.1016/j.cell.2020.10.016
  31. Renz BW, Takahashi R, Tanaka T, et al. β2 adrenergic neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;33(1):75–90.e77. doi: 10.1016/j.ccell.2017.11.007
  32. Farren MR, Sayegh L, Ware MB, et al. Immunologic alterations in the pancreatic cancer microenvironment of patients treated with neoadjuvant chemotherapy and radiotherapy. JCI Insight. 2020;5(1):e130362. doi: 10.1172/jci.insight.130362
  33. ICGC/TCGA pan-cancer analysis of whole genomes consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93. doi: 10.1038/s41586-020-1969-6
  34. Makohon-Moore AP, Matsukuma K, Zhang M, et al. Precancerous neoplastic cells can move through the pancreatic ductal system. Nature. 2018;561(7722):201–205. doi: 10.1038/s41586-018-0481-8
  35. Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–1117. doi: 10.1038/nature09515
  36. Kuboki Y, Fischer CG, Beleva Guthrie V, et al. Single-cell sequencing defines genetic heterogeneity in pancreatic cancer precursor lesions. J Pathol. 2019;247(3):347–356. doi: 10.1002/path.5194
  37. Wattenberg MM, Asch D, Yu S, et al. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br J Cancer. 2020;122(3):333–339. doi: 10.1038/s41416-019-0582-7
  38. Golan T, Kanji ZS, Epelbaum R, et al. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br J Cancer. 2014;111(6):1132–1138. doi: 10.1038/bjc.2014.418
  39. О’Reilly EM, Lee JW, Zalupski M, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020;38(13):1378–1388. doi: 10.1200/JCO.19.02931
  40. Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–327. doi: 10.1056/NEJMoa1903387
  41. Wong W, Rau fi AG, Safyan RA, et al. BRCA mutations in pancreas cancer: spectrum, current management, challenges and future prospects. Cancer Manag Res. 2020;12:2731–2742. doi: 10.2147/CMAR.S211151
  42. Kasi A, Al-Jumayli M, Park R, et al. Update on the role of poly (ADP-ribose) polymerase inhibitors in the DNA repair-deficient pancreatic cancers: a narrative review. J Pancreat Cancer. 2020;6(1):107–115. doi: 10.1089/pancan.2020.0010
  43. Fujikura K, Hosoda W, Felsenstein M, et al. Multiregion whole-exome sequencing of intraductal papillary mucinous neoplasms reveals frequent somatic KLF4 mutations predominantly in low-grade regions. Gut. 2020;70(5):928–939. doi: 10.1136/gutjnl-2020-321217
  44. Chan-Seng-Yue M, Kim JC, Wilson GW, et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet. 2020;52(2):231–240. doi: 10.1038/s41588-019-0566-9
  45. Connor AA, Denroche RE, Jang GH, et al. Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell. 2019;35(2):267–282.e7. doi: 10.1016/j.ccell.2018.12.010
  46. Bockorny B, Semenisty V, Macarulla T, et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med. 2020;26(6):878–885. doi: 10.1038/s41591-020-0880-x
  47. Byrne KT, Betts CB, Mick R, et al. Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin Cancer Res. 2021;27(16):4574–4586. doi: 10.1158/1078-0432.CCR-21-1047
  48. Ghidini M, Lampis A, Mirchev MB, et al. Immune-based therapies and the role of microsatellite instability in pancreatic cancer. Genes. 2020;12(1):33. doi: 10.3390/genes12010033
  49. Wang L, Qu J, Zhou N, et al. Effect and biomarker of immune checkpoint blockade therapy for ARID1A deficiency cancers. Biomed Pharmacother. 2020;130:110626. doi: 10.1016/j.biopha.2020.110626
  50. Jiang T, Chen X, Su C, et al. Pan-cancer analysis of ARID1A alterations as biomarkers for immunotherapy outcomes. J Cancer. 2020;11(4):776–780. doi: 10.7150/jca.41296
  51. Okamura R, Kato S, Lee S, et al. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J Immunother Cancer. 2020;8(1):e000438. doi: 10.1136/jitc-2019-000438
  52. Janes MR, Zhang J, Li LS, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172(3):578–589.e517. doi: 10.1016/j.cell.2018.01.006
  53. Canon J, Rex K, Saiki AY, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575(7781):217–223. doi: 10.1038/s41586-019-1694-1
  54. Fell JB, Fischer JP, Baer BR, et al. Identification of the clinical development candidate MRTX849, a Covalent KRAS(G12C) inhibitor for the treatment of cancer. J Med Chem. 2020;63(13):6679–6693.
  55. Kwan AK, Piazza GA, Keeton AB, Leite CA. The path to the clinic: a comprehensive review on direct KRAS(G12C) inhibitors. J Exp Clin Cancer Res. 2022;41(1):27. doi: 10.1186/s13046-021-02225-w
  56. Hofmann MH, Gmachl M, Ramharter J, et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 2021;11(1):142–157. doi: 10.1158/2159-8290.CD-20-0142
  57. Krishnan T, Roberts-Thomson R, Broadbridge V, Price T. Targeting mutated KRAS genes to treat solid tumours. Mol Diagn Ther. 2022;26(1):39–49. doi: 10.1007/s40291-021-00564-0
  58. Wang X, Allen S, Blake JF, et al. Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J Med Chem. 2022;65(4):3123–3133. doi: 10.1021/acs.jmedchem.1c01688
  59. Ferri-Borgogno S, Barui S, McGee AM, et al. Paradoxical role of AT-rich interactive domain 1A in restraining pancreatic carcinogenesis. Cancers (Basel). 2020;12(9):2695. doi: 10.3390/cancers12092695
  60. Ostrem J.M., Peters U., Sos M.L., et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions // Nature. 2013; 503(7477):548–551. doi: 10.1038/nature12796
  61. Park Y, Chui MH, Rahmato Y, et al. Loss of ARID1A in tumor cells renders selective vulnerability to combined ionizing radiation and PARP inhibitor therapy. Clin Cancer Res. 2019;25(18):5584–5594. doi: 10.1158/1078-0432.CCR-18-4222

Copyright (c) 2022 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies