Opportunities and prospects for the treatment of hormone-dependent breast cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The high incidence of breast cancer requires increased attention to the problem of rational pharmacotherapy of this condition. When choosing tactics for the treatment of breast cancer, it is recommended to take into account the immunohistochemical subtype of cancer cells. In the case of detection of estrogen-positive expression, an obligatory component of pharmacotherapy is endocrine therapy with antiestrogen orientation. Despite the fact that there are already many years of positive experience with the use of selective estrogen receptor modulators and aromatase inhibitors, the search for new more effective agents continues in terms of prolonging the life of patients and reducing the risk of adverse reactions.

In recent years, cyclin-dependent kinase 4/6 inhibitors have been added to first-line therapy, which is a breakthrough in the treatment of metastatic breast cancer. The introduction of combined antiestrogen therapy with targeted agents that have the ability to inhibit phosphatidylinositol-3-kinase is logical in the event of resistance to primary endocrine therapy. However, the need to search and study new drugs remains. In this regard, the most promising direction is the development of agents that can reduce the expression of the Estrogen receptor alpha protein, and block estrogen-dependent and independent estrogen receptor signaling.

About the authors

Elena A. Egorova

Medical institute named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Email: egorovapharm@mail.ru
ORCID iD: 0000-0003-4012-2523
SPIN-code: 6856-7328

Cand. Sci. (Pharm.)

Russian Federation, Simferopol

Asie N. Useinova

Medical institute named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Email: mametova.as@mail.ru
ORCID iD: 0000-0003-0725-5455
SPIN-code: 9031-2079

MD, Cand. Sci. (Med.)

Russian Federation, Simferopol

Sofia P. Maryanenko

Medical institute named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Email: sofiya-maryanenko@mail.ru
ORCID iD: 0000-0003-0765-5336
SPIN-code: 7108-3318
Russian Federation, Simferopol

Ksenia N. Koryanova

Pyatigorsk Medical and Pharmaceutical Institute

Email: kskor-16@mail.ru
ORCID iD: 0000-0003-1571-9301
SPIN-code: 6028-2737

Cand. Sci. (Pharm.)

Russian Federation, Pyatigorsk

Jamal M. Al-Nsour

Medical institute named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Email: drnsour@yahoo.com
ORCID iD: 0000-0003-2121-6735
SPIN-code: 4345-5386

MD, Cand. Sci. (Med.)

Russian Federation, Simferopol

Daniel M. Kasparyan

Pyatigorsk Medical and Pharmaceutical Institute

Email: dankasparyan001@mail.ru
ORCID iD: 0009-0009-5951-7091
Russian Federation, Pyatigorsk

Ellina Yu. Kesova

The First Sechenov Moscow State Medical University

Author for correspondence.
Email: elkesova@icloud.com
ORCID iD: 0009-0005-0553-8365
Russian Federation, Moscow

References

  1. International agency for research on cancer [Internet]. [cited: 8 Oct 2022]. Available from: https://gco.iarc.fr/
  2. Wang Y, Lewin N, Qaoud Y, Rajaee AN, Scheer AS. The oncologic impact of hormone replacement therapy in premenopausal breast cancer survivors: A systematic review. The Breast. 2018;40:123–130. doi: 10.1016/j.breast.2018.05.002
  3. Cardoso F, Paluch-Shimon S, Senkus E, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol. 2020;31(12):1623–1649. doi: 10.1016/j.annonc.2020.09.010
  4. Bayraktar S, Arun B. BRCA mutation genetic testing implications in the United States. The Breast. 2017;31:224–232. doi: 10.1016/j.breast.2016.11.021
  5. Rugo HS, Rumble RB, Macrae E, et al. Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline. J Clin Oncol. 2016;34(2):3069–3103. doi: 10.1200/JCO.2016.67.1487
  6. Shagufta, Ahmad I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem. 2018;143:515–531. doi: 10.1016/j.ejmech.2017.11.056
  7. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. The Lancet. 2015;386(10001):1341–1352. doi: 10.1016/S0140-6736(15)61074-1
  8. Bartlett JMS, Ahmed I, Regan MM, et al. HER2 status predicts for upfront AI benefit: A TRANS-AIOG meta-analysis of 12,129 patients from ATAC, BIG 1-98 and TEAM with centrally determined HER2. Eur J Cancer. 2017;79:129–138. doi: 10.1016/j.ejca.2017.03.033
  9. Ding H, Fang L, Xin W, et al. Cost-effectiveness analysis of fulvestrant versus anastrozole as first-line treatment for hormone receptor-positive advanced breast cancer. Eur J Cancer Care. 2017;26(6). doi: 10.1111/ecc.12733
  10. Simon JA, Altomare C, Cort S, Jiang W, Pinkerton JV. Overall Safety of Ospemifene in Postmenopausal Women from Placebo-Controlled Phase 2 and 3 Trials. J Womens Health (Larchmt). 2018;27(1):14–23. doi: 10.1089/jwh.2017.6385
  11. Archer DF, Goldstein SR, Simon JA, et al. Efficacy and safety of ospemifene in postmenopausal women with moderate-to-severe vaginal dryness: a phase 3, randomized, double-blind, placebo-controlled, multicenter trial. Menopause. 2019;26(6):611–621. doi: 10.1097/GME.0000000000001292
  12. Arao Y, Korach KS. The physiological role of estrogen receptor functional domains. Essays Biochem. 2021;65(6):867–875. doi: 10.1042/EBC20200167
  13. Johnston SJ, Cheung KL. Endocrine Therapy for Breast Cancer: A Model of Hormonal Manipulation. Oncol Ther. 2018;6:141–156. doi: 10.1007/s40487-018-0062-x
  14. Perrone F, Gallo C, De Laurentiis M, et al. Phase 3 randomized study of adjuvant anastrozole (A), exemestane (E), or letrozole (L) with or without tamoxifen (T) in postmenopausal women with hormone-responsive (HR) breast cancer: The FATA-GIM3 trial. Journal of Clinical Oncology. 2017;35(15S):515. doi: 10.1200/JCO.2017.35.15_suppl.515
  15. Razavi P, Chang MT, Xu G, et al. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell. 2018;34(3):427–438.e6. doi: 10.1016/j.ccell.2018.08.008
  16. Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021;12. doi: 10.1038/s41467-021-22024-3
  17. Thangavel C, Dean JL, Ertel A, et al. Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer. 2018;18(3):333–345. doi: 10.1530/ERC-10-0262
  18. Glück S. Consequences of the Convergence of Multiple Alternate Pathways on the Estrogen Receptor in the Treatment of Metastatic Breast Cancer. Clin Breast Cancer. 2017;17(2):79–90. doi: 10.1016/j.clbc.2016.08.004
  19. Guo L, Hu Y, Chen X, et al. Safety and efficacy profile of cyclin-dependent kinases 4/6 inhibitor palbociclib in cancer therapy: A meta-analysis of clinical trials. Cancer Med. 2019;8(4):1389–1400. doi: 10.1002/cam4.1970
  20. Finn RS, Crown JP, Lang I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35. doi: 10.1016/S1470-2045(14)71159-3
  21. Braal CL, Jongbloed EM, Wilting SM, et al. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs. 2021;81(3):317–331. doi: 10.1007/s40265-020-01461-2
  22. Hortobagyi GN, Stemmer SM, Burris HA, et al. Updated results from MONALEESA-2, a phase 3 trial of first-line ribociclib + letrozole in hormone receptor-positive (HR+), HER2-negative (HER2–), Advanced Breast Cancer (ABC). Journal of Clinical Oncology. 2017;35(15S):1038. doi: 10.1200/jco.2017.35.15_suppl.1038
  23. Hortobagyi GN, Stemmer SM, Burris HA, et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med. 2016;375(18):1738–1748. Corrected and republished from: N Engl J Med. 2018;379(26):2582. doi: 10.1056/NEJMoa1609709
  24. Dickler MN, Tolaney SM, Rugo HS, et al. MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HЕR2+/HER2- Metastatic Breast Cancer. Clin Cancer Res. 2017;23(17):5218–5224. Corrected and republished from: Clin Cancer Res. 2018;24(21):5485. doi: 10.1158/1078-0432.CCR-17-0754
  25. Chen H, Cheng M, Gao P, et al. GDC-0941 activates integrin linked kinase (ILK) expression to cause resistance to GDC-0941 in breast cancer by the tumor necrosis factor (TNF)-α signaling pathway. Bioengineered. 2022;13(4):10944–10955. doi: 10.1080/21655979.2022.2066758
  26. Juric D, Rodon J, Tabernero J, et al. Phosphatidylinositol 3-Kinase α-Selective Inhibition With Alpelisib (BYL719) in PIK3CA-Altered Solid Tumors: Results From the First-in-Human Study. J Clin Oncol. 2018;36(13):1291–1299. doi: 10.1200/JCO.2017.72.7107
  27. Padthaisong S, Dokduang H, Yothaisong S, et al. Inhibitory effect of NVP-BKM120 on cholangiocarcinoma cell growth. Oncol Lett. 2018;16(2):1627–1633. doi: 10.3892/ol.2018.8848
  28. Lee CI, Goodwin A, Wilcken N. Fulvestrant for hormone-sensitive metastatic breast cancer. Cochrane Database Syst Rev. 2017;1(1). doi: 10.1002/14651858.CD011093.pub2
  29. Llombart-Cussac A, Pérez-García JM, Bellet M, et al. Fulvestrant-Palbociclib vs Letrozole-Palbociclib as Initial Therapy for Endocrine-Sensitive, Hormone Receptor-Positive, ERBB2-Negative Advanced Breast Cancer: A Randomized Clinical Trial. JAMA Oncol. 2021;7(12):1791–1799. Corrected and republished from: JAMA Oncol. 2021;7(11):1729. doi: 10.1001/jamaoncol.2021.4301
  30. Huang J, Huang P, Shao XY, et al. Efficacy of fulvestrant 500 mg in Chinese postmenopausal women with advanced/recurrent breast cancer and factors associated with prolonged time-to-treatment failure: A retrospective case series. Medicine (Baltimore). 2020;99(29):e20821. doi: 10.1097/MD.0000000000020821
  31. Robertson JF, Cheung K-L, Noguchi S, et al. Health-related quality of life from a phase 3 randomized trial of Fulvestrant 500 mg vs anastrozole for hormone receptor-positive advanced breast cancer (Falcon). Journal of Clinical Oncology. 2017;35(15S):1048. doi: 10.1200/jco.2017.35.15_suppl.1048
  32. Shagufta, Ahmad I, Mathew S, Rahman S. Recent progress in selective estrogen receptor downregulators (SERDs) for the treatment of breast cancer. RSC Med Chem. 2020;11(4):438–454. doi: 10.1039/c9md00570f
  33. Tria GS, Abrams T, Baird J, et al. Discovery of LSZ102, a Potent, Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen Receptor Positive Breast Cancer. J Med Chem. 2018;61(7):2837–2864. doi: 10.1021/acs.jmedchem.7b01682
  34. Scott JS, Moss TA, Balazs A, et al. Discovery of AZD9833, a Potent and Orally Bioavailable Selective Estrogen Receptor Degrader and Antagonist. J Med Chem. 2020;63(23):14530–14559. doi: 10.1021/acs.jmedchem.0c01163
  35. Nguyen KT, Mun H, Lee CS, Hwang CS. Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Exp Mol Med. 2018;50(7):1–8. doi: 10.1038/s12276-018-0097-y
  36. Hu J, Hu B, Wang M, et al. Discovery of ERD-308 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Estrogen Receptor (ER). J Med Chem. 2019;62(3):1420–1442. doi: 10.1021/acs.jmedchem.8b01572
  37. Gao H, Sun X, Rao Y. PROTAC Technology: Opportunities and Challenges. ACS Med Chem Lett. 2020;11(3):237–240. doi: 10.1021/acsmedchemlett.9b00597
  38. Qi SM, Dong J, Xu ZY, et al. PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Front Pharmacol. 2021;12:692574. doi: 10.3389/fphar.2021.692574
  39. Puyang X, Furman C, Zheng GZ, et al. Discovery of Selective Estrogen Receptor Covalent Antagonists for the Treatment of ERαWT and ERαMUT Breast Cancer. Cancer Discov. 2018;8(9):1176–1193. doi: 10.1158/2159-8290.CD-17-1229
  40. Hamilton EP, Wang JS, Pluard T, et al. Abstract PD8-06: Phase I/II trial of H3B-6545, a novel selective estrogen receptor covalent antagonist (SERCA), in estrogen receptor positive (ER+), human epidermal growth factor receptor 2 negative (HER2-) advanced breast cancer. Cancer Research. 2021;81(4S). doi: 10.1158/1538-7445.sabcs20-pd8-06
  41. A Study of H3B-6545 in Combination With Palbociclib in Women With Advanced or Metastatic Estrogen Receptor-Positive Human Epidermal Growth Factor Receptor-2 (HER2)-Negative Breast Cancer. [Internet]. [cited: 30 Nov 2022]. Available from: https://clinicaltrials.gov/ct2/show/NCT04288089

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies