Molecular genetics features of anaplastic thyroid carcinoma
- Authors: Musonova A.K.1, Nazarov V.D.1, Sidorenko D.V.1, Musaelyan A.A.1,2, Alekseeva E.A.1, Kuzovenkova D.A.1, Kozorezova E.S.3, Vorobev S.L.3, Orlov S.V.1,2, Mazing A.V.1, Lapin S.V.1, Emanuel V.L.1
-
Affiliations:
- Academician I.P. Pavlov First St. Petersburg State Medical University
- Research Institute of Medical Primatology
- National Center for Clinical Morphological Diagnostics
- Issue: Vol 27, No 2 (2022)
- Pages: 59-70
- Section: Clinical investigations
- URL: https://journals.rcsi.science/1028-9984/article/view/133133
- DOI: https://doi.org/10.17816/onco115251
- ID: 133133
Cite item
Abstract
INTRODUCTION: Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer accounting for 1–2% of all malignancies. Systemic therapy remains the main treatment strategy. Targeted therapy and immunotherapy are prescribed when certain molecular genetic aberrations are detected.
THE AIM: To investigate the molecular genetic profile of samples of anaplastic thyroid carcinoma.
MATERIALS AND METHODS: The study included 37 patients with ATC. Mutation V600E BRAF, mutations in the gene NRAS and KRAS were detected by allele-specific polymerase chain reaction (AS-PCR). Microsatellite instability (MSI) was determined by fragment analysis in according to ESMO recommendations. Mutations in the promoter region of the TERT gene were used by Sanger sequencing. NTRK1, EML4-ALK, PAX8/PPARy и RET/PTC translocations were determined in all patients with ATC by real-time polymerase chain reaction (PCR).
RESULTS: According to the results of the study, the frequency of the V600E mutation in the BRAF gene was 32.4% (12/37). The frequency of aberrations in the NRAS, KRAS genes in anaplastic thyroid carcinoma was 13.5% (n=5). The prevalence of point mutations in the promoter gene TERT in food samples of ATC was 24.3% (n=9). MSI was found in 2.7% (1/37) of cases of anapalastic thyroid carcinoma. NTRK1, EML4-ALK, PAX8/PPARy and RET/PTC translocations were not detected in cases with anaplastic thyroid carcinoma.
CONCLUSION: The further study of the main specific molecular targets in cancer cells will allow to personalize the tactics of patients with anaplastic thyroid carcinoma.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Anastasia K. Musonova
Academician I.P. Pavlov First St. Petersburg State Medical University
Author for correspondence.
Email: amusonova@mail.ru
ORCID iD: 0000-0003-0986-5150
SPIN-code: 8719-8518
Russian Federation, Saint Petersburg
Vladimir D. Nazarov
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: nazarov19932@mail.ru
ORCID iD: 0000-0002-9354-8790
SPIN-code: 5072-7229
MD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgDaria V. Sidorenko
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: si-do-renko@mail.ru
ORCID iD: 0000-0001-8503-0759
SPIN-code: 4978-3190
Russian Federation, Saint Petersburg
Aram A. Musaelyan
Academician I.P. Pavlov First St. Petersburg State Medical University; Research Institute of Medical Primatology
Email: a.musaelyan8@gmail.com
ORCID iD: 0000-0002-7570-2256
SPIN-code: 1093-3044
Junior Research Associate
Russian Federation, Saint Petersburg; SochiEkaterina A. Alekseeva
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: kkatealex96@gmail.com
ORCID iD: 0000-0001-7341-419X
Russian Federation, Saint Petersburg
Daria A. Kuzovenkova
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: Kuzovenkovadasha@gmail.com
ORCID iD: 0000-0002-0087-0917
Russian Federation, Saint Petersburg
Evgeniya S. Kozorezova
National Center for Clinical Morphological Diagnostics
Email: pdclient@ncmd.ru
ORCID iD: 0000-0002-3659-7510
MD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgSergey L. Vorobev
National Center for Clinical Morphological Diagnostics
Email: ncmd@ncmd.ru
ORCID iD: 0000-0002-7817-9069
SPIN-code: 5920-0603
MD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgSergey V. Orlov
Academician I.P. Pavlov First St. Petersburg State Medical University; Research Institute of Medical Primatology
Email: mail@primatologia.ru
ORCID iD: 0000-0001-6080-8042
SPIN-code: 7517-4104
MD, Dr. Sci. (Med.), Professor, Corresponding Member of the RAS
Russian Federation, Saint Petersburg; SochiAleksandrа V. Mazing
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: alex_mazing@mail.ru
ORCID iD: 0000-0002-3055-6507
SPIN-code: 4458-4633
MD, Cand. Sci. (Med.), Senior Research Associate
Russian Federation, Saint PetersburgSergey V. Lapin
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: svlapin@mail.ru
ORCID iD: 0000-0002-4998-3699
SPIN-code: 9852-7501
MD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgVladimir L. Emanuel
Academician I.P. Pavlov First St. Petersburg State Medical University
Email: vladimirem1@gmail.com
ORCID iD: 0000-0002-2079-0439
SPIN-code: 1177-4802
MD, Dr. Sci. (Med.), Professor
Russian Federation, Saint PetersburgReferences
- Pereira M, Williams VL, Hallanger Johnson J, Valderrabano P. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations. Thyroid. 2020;30(8):1132–1140. doi: 10.1089/thy.2019.0415
- Lin B, Ma H, Ma M, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J Transl Res. 2019;11(9):5888–5896.
- Maniakas A, Dadu R, Busaidy NL, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 2020;6(9):1397–1404. doi: 10.1001/jamaoncol.2020.3362
- Pozdeyev N, Gay LM, Sokol ES, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24(13):3059–3068. doi: 10.1158/1078-0432.CCR-18-0373
- Volante M, Lam AK, Papotti M, et al. molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? Endocr Pathol. 2021;32:63–76. doi: 10.1007/s12022-021-09665-2
- Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–1066. doi: 10.1172/JCI85271
- Quiros RM, Ding HG, Gattuso P, et al. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer. 2005;103(11):2261–2268. doi: 10.1002/cncr.21073
- Xu B, Fuchs T, Dogan S, et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid. 2020;30(10):1505–1517. doi: 10.1089/thy.2020.0086
- Kebebew E, Greenspan FS, Clark OH, et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103(7):1330–1335. doi: 10.1002/cncr.20936
- Yoo SK, Lee S, Kim SJ, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239. doi: 10.1371/journal.pgen.1006239
- Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–690. doi: 10.1016/j.cell.2014.09.050
- Mitmaker E, Alvarado C, Bégin LR, Trifiro M. Microsatellite instability in benign and malignant thyroid neoplasms. J Surg Res. 2008;150(1):40–48. doi: 10.1016/j.jss.2007.12.760
- Ragazzi M, Torricelli F, Donati B, et al. Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature. Virchows Arch. 2021. 478(2):265–281. doi: 10.1007/s00428-020-02891-9
- Pekova B, Sykorova V, Mastnikova K, et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis. Cancers (Basel). 2021;13:1932. doi: 10.3390/cancers13081932
- Godbert Y, Henriques de Figueiredo B, Bonichon F, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2015;33(20):e84–e87. doi: 10.1200/JCO.2013.49.6596
- Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite Instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22(4):813–820. doi: 10.1158/1078-0432.CCR-15-1678
- Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520. doi: 10.1056/NEJMoa1500596
- Jarry A, Masson D, Cassagnau E, et al. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E. Mol Cell Probes. 2004;18(5):349–352. doi: 10.1016/j.mcp.2004.05.004
- Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):1232–1243. doi: 10.1093/annonc/mdz116
- Rashid M, Agarwal A, Pradhan R, et al. Genetic alterations in anaplastic thyroid carcinoma. Indian J Endocrinol Metab. 2019;23(4):480–485. doi: 10.4103/ijem.IJEM_321_19
- Sugitani I, Miyauchi A, Sugino K, et al. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC research consortium of Japan cohort study of 677 patients. World J Surg. 2012;36(6):1247–1254. doi: 10.1007/s00268-012-1437-z
- Prete A, Borges de Souza P, Censi S, et al. Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne). 2020;11:102. doi: 10.3389/fendo.2020.00102
- Gunda V, Gigliotti B, Ndishabandi D, et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. Br J Cancer. 2018;119(10):1223–1232. doi: 10.1038/s41416-018-0296-2
- Angell TE, Lechner MG, Jang JK, et al. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid. 2014;24(9):1385–1393. doi: 10.1089/thy.2014.0134
- Brauner E, Gunda V, Vanden Borre P, et al. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget. 2016;7(13):17194–17211. doi: 10.18632/oncotarget.7839
- Jang EK, Song DE, Sim SY, et al. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid. 2014;24(8):1275–1281. doi: 10.1089/thy.2014.0053
- Ravi N, Yang M, Gretarsson S, et al. Identification of targetable lesions in anaplastic thyroid cancer by genome profiling. Cancers (Basel). 2019;11(3):402. doi: 10.3390/cancers11030402
- Bonhomme B, Godbert Y, Perot G, et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid. 2017;27(5):682–692. doi: 10.1089/thy.2016.0254
- Lai WA, Liu CY, Lin SY, et al. Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors. Cancers (Basel). 2020;12(7):1973. doi: 10.3390/cancers12071973
- Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143–R155. doi: 10.1530/ERC-15-0533
- Gomes A. Genetic testing techniques. In: Pediatric cancer genetics. 2018. P. 47–64. doi: 10.1016/B978-0-323-48555-5.00005-3
- Shen X, Liu R, Xing M. A six-genotype genetic prognostic model for papillary thyroid cancer. Endocr Relat Cancer. 2017;24(1):41–52. doi: 10.1530/ERC-16-0402
- Lazzereschi D, Palmirotta R, Ranieri A, et al. Microsatellite instability in thyroid tumours and tumour-like lesions. Br J Cancer. 1999;79(2):340–345. doi: 10.1038/sj.bjc.6690054
- Rocha ML, Schmid KW, Czapiewski P. The prevalence of DNA microsatellite instability in anaplastic thyroid carcinoma — systematic review and discussion of current therapeutic options. Contemp Oncol (Pozn). 2021;25(3):213–223. doi: 10.5114/wo.2021.110052
- Wong KS, Lorch JH, Alexander EK, et al. Clinicopathologic features of mismatch repair-deficient anaplastic thyroid carcinomas. Thyroid. 2019;29(5):666–673. doi: 10.1089/thy.2018.0716
- Romei C, Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2012;3:54. doi: 10.3389/fendo.2012.00054
- Garcia-Rostan G, Camp RL, Herrero A, et al. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001;158(3):987–996. doi: 10.1016/s0002-9440(10)64045-x
Supplementary files
