Phagocytic and chemiluminescent activity of blood neutrophils in patients with bladder cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Tumor microenvironment modulates (including with the help of metabolites) the functional activity of the neutrophils that contribute to the reprogramming of the antitumor activity into a protumor one.

AIMS: To study the phagocytic and chemiluminescent activity of neutrophils in patients with bladder cancer (BC) under the influence of metabolites of the tumor microenvironment in vitro.

MATERIALS AND METHODS: We examined 37 patients with superficial BC (T1,а,isN0M0) and considered 32 healthy individuals as a control group. Neutrophils isolated from their blood were incubated in vitro with lactate, ADP, and glutamate. Phagocytic activity was examined using flow cytometry, and the intensity of the respiratory burst of neutrophils was evaluated via chemiluminescent analysis.

RESULTS: In patients with BC, the phagocytic index (PhI) values are reduced compared to the control sample (without in vitro metabolite exposure) and when exposed to glutamate, while the effect of lactate on cells causes an increase in the phagocytic number and PhI. Moreover, under the influence of lactate in vitro, the activity of spontaneous and zymosan-induced chemiluminescence of neutrophils decreases. ADP causes a decrease in spontaneous chemiluminescence only. Finally, under the influence of glutamate, the indicators of spontaneous and induced chemiluminescence decrease.

CONCLUSIONS: Under the influence of lactate and ADP (products of tumor cells), the phagocytic activity of a population of immature neutrophils is stimulated, which leads to myeloid suppressor cells that inhibit antitumor immunity. Thus, metabolites of the tumor microenvironment modulate the activity of the respiratory burst of neutrophils in patients with BC.

About the authors

Andrei A. Savchenko

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Separate Division of the Research Institute of Medical Problems of the North; Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky

Email: aasavchenko@yandex.ru
ORCID iD: 0000-0001-5829-672X
SPIN-code: 3132-8260

MD, Dr. Sci. (Med.), Professor

Russian Federation, Krasnoyarsk; Krasnoyarsk

Ruslan A. Zukov

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Regional Clinical Oncology Dispensary named after A.I.Kryzhanovsky RSBHE

Email: ethics.commitee@mail.ru
ORCID iD: 0000-0002-7210-3020
SPIN-code: 3632-8415

MD, Dr. Sci. (Med.), Professor, Head Physician of A.I. Kryzhanovsky Krasnoyarsk Regional Clinical Oncology Center

Russian Federation, Krasnoyarsk; Krasnoyarsk

Michael A. Firsov

Professor V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Clinical Regional Hospital

Email: firsma@mail.ru
ORCID iD: 0000-0002-0887-0081
SPIN-code: 6308-6260

Cand. Sci. (Med.), Head of the Department of Urology, Andrology and Sexology of the Institute of Postgraduate Education

 

Russian Federation, 1, Partizana Zheleznyaka St., Krasnoyarsk, 660022; 3A, Partizana Zheleznyaka St., Krasnoyarsk, 660022

Evgeniy V. Slepov

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Separate Division of the Research Institute of Medical Problems of the North; Krasnoyarsk Regional Clinical Oncology Dispensary named after A.I.Kryzhanovsky RSBHE

Email: slepov99@mail.ru
ORCID iD: 0000-0002-3787-3126
SPIN-code: 2097-0304

MD, Cand. Sci. (Biol.)

Russian Federation, Krasnoyarsk; Krasnoyarsk

Vasiliy D. Belenyuk

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Separate Division of the Research Institute of Medical Problems of the North

Email: dyh.88@mail.ru
ORCID iD: 0000-0003-2848-0846
SPIN-code: 6195-6630
Russian Federation, Krasnoyarsk

Ivan I. Gvozdev

Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Separate Division of the Research Institute of Medical Problems of the North

Email: leshman-mult@mail.ru
ORCID iD: 0000-0002-1041-9871
SPIN-code: 6203-4651

младший научный сотрудник лаборатории НИИ медицинских проблем Севера

Russian Federation, Krasnoyarsk

Alexander G. Borisov

Krasnoyarsk Regional Clinical Oncology Dispensary named after A.I.Kryzhanovsky RSBHE; Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Author for correspondence.
Email: 2410454@mail.ru
ORCID iD: 0000-0002-9026-2615
SPIN-code: 9570-2254

MD, Cand. Sci (Med.)

Russian Federation, Krasnoyarsk; Krasnoyarsk

References

  1. Nosov AK, Krotov NF, Berkut MV. Atlantis exploration: predictive biomarkers to immunotherapy response. Cancer Urology. 2021;17(1):167–177. (In Russ). doi: 10.17650/1726-9776-2021-17-1-167-177
  2. Rasteiro AM, Sá e Lemos E, Oliveira PA, Gil da Costa RM. Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy. Veterinary Sciences. 2022;9(3):107. doi: 10.3390/vetsci9030107
  3. Pshikhachev AM, Mikhaleva LM, Gusniev MA, et al. Clinical and morphological features of non-muscle invasive bladder cancer: implications for treatment, prognosis and relapse of the disease (literature review). Cancer Urology. 2021;17(1):134–141. (In Russ). doi: 10.17650/1726-9776-2021-17-1-134-141
  4. Suchilova MM, Nikolaev AE, Shapiev AN, et al. Modern possibilities of radiological diagnosis of bladder cancer. Journal of Modern Oncology. 2021;22(4):101–108. (In Russ). doi: 10.26442/18151434.2020.4.200257
  5. Guillerey C. NK Cells in the Tumor Microenvironment. Adv Exp Med Biol. 2020;1273:69–90. doi: 10.1007/978-3-030-49270-0_4
  6. Tallon de Lara P, Castanon H, Sterpi M, van den Broek M. Antimetastatic defense by CD8(+) T cells. Trends Cancer. 2022;8(2):145–157. doi: 10.1016/j.trecan.2021.10.006
  7. Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 2020;17(1):27–35. doi: 10.1038/s41423-019-0344-8
  8. Sun Y, Chang W, Yao J, et al. Effect of immune checkpoint inhibitors in patients with gastric hepatoid adenocarcinoma: a case report and literature review. J Int Med Res. 2022;50(4):3000605221091095. doi: 10.1177/03000605221091095
  9. Yanagisawa T, Mori K, Katayama S, et al. Hematological prognosticators in metastatic renal cell cancer treated with immune checkpoint inhibitors: a meta-analysis. Immunotherapy. 2022;14(9):709–725. doi: 10.2217/imt-2021-0207
  10. Jin L, Kim HS, Shi J. Neutrophil in the Pancreatic Tumor Microenvironment. Biomolecules. 2021;11(8). doi: 10.3390/biom11081170
  11. McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest. 2021;131(6). doi: 10.1172/JCI143759
  12. Zeindler J, Angehrn F, Droeser R, et al. Infiltration by myeloperoxidase-positive neutrophils is an independent prognostic factor in breast cancer. Breast Cancer Res Treat. 2019;177(3):581–589. doi: 10.1007/s10549-019-05336-3
  13. Matlung HL, Babes L, Zhao XW, et al. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep. 2018;23(13):3946–3959 e3946. doi: 10.1016/j.celrep.2018.05.082
  14. Savchenko AA, Borisov AG, Modestov AA, et al. Phenotypic features and chemiluminescent activity of neutrophilic granulocytes in the patients with renal cancer. Medical Immunology (Russia). 2016;18(3):259–268. (In Russ.) doi: 10.15789/1563-0625-2016-3-259-268
  15. Langiu M, Palacios-Acedo AL, Crescence L, et al. Neutrophils, Cancer and Thrombosis: The New Bermuda Triangle in Cancer Research. Int J Mol Sci. 2022;23(3). doi: 10.3390/ijms23031257
  16. Taucher E, Taucher V, Fink-Neuboeck N, et al. Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung. Cancers (Basel). 2021;13(23). doi: 10.3390/cancers13235972
  17. Zhao Y, Rahmy S, Liu Z, et al. Rational targeting of immunosuppressive neutrophils in cancer. Pharmacol Ther. 2020;212:107556. doi: 10.1016/j.pharmthera.2020.107556
  18. De Meo ML, Spicer JD. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin Immunol. 2021;57:101595. doi: 10.1016/j.smim.2022.101595
  19. Mao C, Xu X, Ding Y, Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine. Front Med (Lausanne). 2021;8:735590. doi: 10.3389/fmed.2021.735590
  20. Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood. 2019;133(20):2159–2167. doi: 10.1182/blood-2018-11-844548
  21. Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019;79(18):4557–4566. doi: 10.1158/0008-5472.CAN-18-3962
  22. Vitale I, Manic G, Coussens LM, et al. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019;30(1):36–50. doi: 10.1016/j.cmet.2019.06.001
  23. Kooshki L, Mahdavi P, Fakhri S, et al. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors. 2022;48(2):359–383. doi: 10.1002/biof.1799
  24. Pan T, Liu J, Xu S, et al. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells. Theranostics. 2020;10(2):516–536. doi: 10.7150/thno.37472
  25. Zou J, Du K, Li S, et al. Glutamine Metabolism Regulators Associated with Cancer Development and the Tumor Microenvironment: A Pan-Cancer Multi-Omics Analysis. Genes (Basel). 2021;12(9). doi: 10.3390/genes12091305
  26. Savchenko AA, Borisov AG, Beleniuk VD, Moshev AV. Changes in the subsets and phagocytic activity of monocytes in patients with kidney cancer under the influence of metabolites in vitro. Bulletin of Experimental Biology and Medicine. 2021;171(3):344–348. (In Russ). doi: 10.47056/0365-9615-2021-171-3-344-348
  27. Savchenko AA, Kudryavtsev IV, Borisov AG. Methods of Estimation and the Role of Respiratory Burst in the Pathogenesis of Infectious and Inflammatory Diseases. Russian Journal of Infection and Immunity. 2018;7(4):327–340. (In Russ). doi: 10.15789/2220-7619-2017-4-327-340
  28. Wu Q, Gurpinar A, Roberts M, et al. Identification of the NADPH Oxidase (Nox) Subtype and the Source of Superoxide Production in the Micturition Centre. Biology (Basel). 2022;11(2). doi: 10.3390/biology11020183
  29. Bhagat TD, Von Ahrens D, Dawlaty M, et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. Elife. 2019;8. doi: 10.7554/eLife.50663
  30. Guerra L, Bonetti L, Brenner D. Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Rep. 2020;32(1):107848. doi: 10.1016/j.celrep.2020.107848
  31. Layhadi JA, Fountain SJ. ATP-Evoked Intracellular Ca(2+) Responses in M-CSF Differentiated Human Monocyte-Derived Macrophage are Mediated by P2X4 and P2Y11 Receptor Activation. Int J Mol Sci. 2019;20(20). doi: 10.3390/ijms20205113
  32. Romero-Garcia S, Moreno-Altamirano MM, Prado-Garcia H, Sanchez-Garcia FJ. Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Front Immunol. 2016;7:52. doi: 10.3389/fimmu.2016.00052
  33. Bleve A, Consonni FM, Porta C, et al. Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers (Basel). 2022;14(3). doi: 10.3390/cancers14030510
  34. Sica A, Massarotti M. Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun. 2017;85:117–125. doi: 10.1016/j.jaut.2017.07.010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Savchenko A.A., Zukov R.A., Firsov M.A., Slepov E.V., Belenyuk V.D., Gvozdev I.I., Borisov A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies