Risk factors for thyroid cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Thyroid cancer (TC) is the most common tumor among endocrine malignant neoplasms all over the world. Over the past 20 years, there has been not only an increase in the indicators of true morbidity (not associated with active detection) of TC, but also the absence of a decrease in mortality and disability in this pathology. The identification of causal factors is important for clinical and scientific purposes, as it is the main requirement for the development of preventive measures and early diagnosis, forecasting the dynamics of the incidence of TC. The article provides an overview of known risk factors for the development of TC using sources of foreign and domestic literature, where preference is given to the results of large-scale scientific research. The article presents a wide range of causes of the development of TC: ionizing radiation, genetic factors, dietary characteristics, background diseases, and others.

About the authors

Aleksandr F. Lazarev

Altai State Medical University (ASMU)

Email: lazarev@akzs.ru
ORCID iD: 0000-0003-1080-5294
SPIN-code: 1161-8387

MD, Dr. Sci. (Med.), Professor

Russian Federation, Barnaul

Irina M. Zayarova

Altai State Medical University (ASMU)

Email: zaxarova270494@mail.ru

Postgraduate Student

Russian Federation, Barnaul

Valentina D. Petrova

Altai State Medical University (ASMU)

Author for correspondence.
Email: valent_04@mail.ru
ORCID iD: 0000-0001-7169-9646
SPIN-code: 2941-6649

MD, Cand. Sci (Med.)

Russian Federation, Barnaul

References

  1. Deng Y, Li H, Wang M, Li N, et al. Global Burden of Thyroid Cancer From 1990 to 2017. JAMA Netw Open. 2020 Jun 1;3(6):208759. PMID: 32589231 Free PMC article. doi: 10.1001. jamanetworkopen.2020.8759
  2. Riccardo V, Pasqualino M, Paolo V. The changing epidemiology of thyroid cancer: why is incidence increasing? Curr Opin Oncol. 2015;(1):1–7. doi: 10.1097/CCO.0000000000000148
  3. Seib CD, Sosa JA, Seib CD, et al. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol Metab Clin North Am. 2019;(1):23–35. doi: 10.1016/j.ecl.2018.10.002
  4. Bray F, Colombet M, Mery L, et al. Cancer Incidence in Five Continents. Lyon: International Agency for Research on Cancer. 2017; (11). Available from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Cancer-Incidence-In-Five-Continents%C2%A0Volume-XI-2021
  5. Wang TS, Goffredo P, Sosa JA, Roman SA. Papillary Thyroid Microcarcinoma: An Over-Treated Malignancy. World J Surg. 2014;38(9):2297–2303. doi: 10.1007/s00268-014-2602-3
  6. Weir HK, Thompson TD, Soman A, Moller B, Leadbetter S. Past, Present, and Future of Cancer Incidence in the United States: From 1975 to 2020. Cancer. 2015;121(11):1827−1837. doi: 10.1002/cncr.29258
  7. Yoon JH, Lee HS, Kim EK, et al. Malignancy risk stratification of thyroid nodules: comparison between the thyroid imaging reporting and data system and the 2014 American thyroid association management guidelines. Radiology. 2016;278(3):917–924. doi: 10.1148/radiol.2015150056
  8. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;68(6):394−424. doi: 10.3322/caac.21492
  9. Kaprin AD, Starinsky VV, Shakhzadova AO, editors. Malignant neoplasms in Russia in 2020 (morbidity and mortality). HELL. Moscow: MNIOI im. P.A. Gertsen - branch of the Federal State Budgetary Institution “NMITs Radiology” of the Ministry of Health of Russia. 2021. (In Russ).
  10. Kaprin AD, Starinsky VV, Shakhzadova AO, editors. The state of cancer care in Russia in 2020. Moscow: MNIOI im. P.A. Herzen – branch FGBI «NERC» Ministry of health of Russia; 2021. (In Russ.).
  11. Tkhakakhov A.A. Epidemiology and morphology of tumors of the thyroid gland in the Kabardino-Balkaria for the period 1990-2014. Clinical and experimental thyroidology. 2016;12(4):4−8. (In Russ). doi: 10.14341/ket2016411-15
  12. Cancer of The Thyroid. org [internet]. SEERStatFactSheets. Available from: http://seer.cancer.gov/statfacts/html/thyro.html
  13. O’Grady TJ, Gates MA, Boscoe FP. Thyroid cancer incidence attributable to overdiagnosis in the United States 1981–2011. Int J Cancer. 2015;137(11):2664−2673. doi: 10.1002/ijc.29634
  14. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974−2013. JAMA. 2017;317(13):1338–1348. doi: 10.1001/jama.2017.2719
  15. Clinical Practice Guidelines in Oncology: Thyroid Carcinoma. National Comprehensive Cancer Network. Version. 2020 June 13.
  16. Sanabria A, Kowalski LP, Shan JP, Nixon IJ, Angelos P, Williams MD, et al. Growing incidence of thyroid carcinoma in recent years: factors underlying overdiagnosis. Head & neck. 2018;40(4):855−866. doi: 10.1002/hed.25029
  17. Morris LG, Sikora AG, Tosteson TD, Davis L. Changing Trends in the Incidence of Thyroid Cancer in the United States. JAMA Otolaryngol Head Neck Surg.2016;142(7):709–711. doi: 10.1001/jamaoto.2016.0230
  18. Lazarev AF. Formation of cancer risk groups using digital technologies: guidelines for doctors, residents and students / ed. A.F. Lazarev. Barnaul: Publishing House of the FGBOU VO ASMU of the Ministry of Health of Russia, 2020. (In Russ).
  19. Thomas G. Radiation and thyroid cancer-an overview. Radiat Prot Dosimetry. 2018;182(1):53−57. doi: 10.1093/rpd/ncy146
  20. O’Kane SM, Mulhern MS, Pourshahidi LK, Strain JJ, Yeats AJ. Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review. Nutr Rev. 2018;76(6):418−431. doi: 10.1093/nutrit/nuy008
  21. Choi JS, Kim EK, Moon HJ, Kwak JY. Higher body mass index may be a predictor of extrathyroidal extension in patients with papillary thyroid microcarcinoma. Endocrine. 2015;48(1):264–271. doi: 10.1007/s12020-014-0293-z
  22. Paches AI. Tumors of the head and neck .4-e edition. Medicine; 2000. (In Russ).
  23. Ha J, Lee J, Jo K, et al. Calcification Patterns in Papillary Thyroid Carcinoma are Associated with Changes in Thyroid Hormones and Coronary Artery Calcification. Journal of Clinical Medicine. 2018;7(8):183. doi: 10.3390/jcm7080183
  24. Beltsevich DG, Vanushko VE, Rumiantsev PO, et al. Russian clinical guidelines for the diagnosis and treatment of high-grade thyroid cancer in adults. Endocrine surgery. 2017;11(1):6−27. (In Russ). doi: 10.14341/serg201716-27
  25. Song YS, Park YJ. Genomic Characterization of Differentiated Thyroid Carcinoma. Endocrinol Metab (Seoul). 2019;34(1):1–10. doi: 10.3803/EnM.2019;34.1.1
  26. Mozhzhukhina IN. Dependence of changes in the thyroid gland on the type and dose of radiation exposure. Bulletin of radiology and radiology. 2004;(5):45−52. (In Russ).
  27. Nagataki S, Shibata Y, Inoue S, Yokoyama N, Shimaoka K. Thyroid diseases among atomic bomb survivors in Nagasaki. JAMA. 1994;364–370. https://pubmed.ncbi.nlm.nih.gov/8028167/
  28. Suzuki K, Mitsutake N, Saenko V, Yamashita S. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis. Cancer Sci. 2015;106 (2):127−133. doi: 10.1111/cas.12583
  29. Agate L, Mariotti S, Elisei R, et al. Thyroid autoantibodies and thyroid function in subjects exposed to Chernobyl fallout during childhood: evidence for a transient radiation-induced elevation of serum thyroid antibodies without an increase in thyroid autoimmune disease. J. Clin. Endocrinol. Metab. 2008;93(7):2729–2736. doi: 10.1210/jc.2008-0060
  30. Ron E, Modan B, Preston D, et al. Thyroid neoplasia following low-dose radiation in childhood. Radiat. Res. 1989;120(3):516–531. https://pubmed.ncbi.nlm.nih.gov/2594972/
  31. Thomas G, Thomas G. Radiation and thyroid cancer. Radiat Prot Dosimetry. 2018;182(1):53–57. doi: 10.1093/rpd/ncy146
  32. Bubnov AN, Chernikov RA, Slepcov IV, et al. Comments on the draft Russian clinical guidelines for the diagnosis and treatment of differentiated thyroid cancer in adults. Endocrine Surgery. 2016;10(1):23−27. (In Russ). doi: 10.14341/serg2016123-27
  33. Tronko MD, Brenne AV, Olijnyk VA, et al. Autoimmune thyroiditis and exposure to iodine 131 in the Ukrainian cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: results from the first screening cycle (1998–2000). J. Clin endocrinol metab. 2006;91(11):4344–4351. doi: 10.1210/jc.2006-0498
  34. Zablotska LB, Bogdanova TI, Ron E, et al. A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: dose–response analysis of thyroid follicular adenomas detected during first screening in Ukraine (1998–2000). Am J Epidemiol. 2008;167(3):305–312. doi: 10.1093/aje/kwm301
  35. Suzuki K, Saenko V, Yamashita S, Mitsutake N. Radiation-Induced Thyroid Cancers: Overview of Molecular Signatures. Cancers (Basel). 2019;11(9):1290. doi: 10.3390/ cancers11091290
  36. Bourhis J, Overgaard J, Audry H, Ang KK, Saunders M, et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet. 2006;368(9538):843–854. doi: 10.1016/S0140-6736(06)69121-6
  37. Hancock SL, Cox RS, McDougall IR. Thyroid diseases after treatment of Hodgkin’s disease. Engl J Med. 1991;325(9):599–605. doi: 10.1056/NEJM199108293250902
  38. Ron E, Saftlas AF. Head and neck radiation carcinogenesis: epidemiologic evidence. Otolaryngol Head Neck Surg. 1996;115(5):403−408. doi: 10.1177/019459989611500507
  39. Hamatani K, Eguchi H, Ito R, et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res. 2008;68(17):7176−7182. doi: 10.1158/0008-5472
  40. Arndt A, Steinestel K, Rump A, et al. Anaplastic lymphoma kinase (ALK) gene rearrangements in radiation-related human papillary thyroid carcinoma after the Chernobyl accident. J Pathol Clin Res. 2018;4(3):175−183. doi: 10.1002/cjp2.102
  41. Voolzke H, Werner A, Wallaschofski H, et al. Occupational exposure to ionizing radiation is associated with autoimmune thyroid disease. J Clin endocrinol metab. 2005;90(8):4587–4592. doi: 10.1210/jc.2005-0286
  42. Hoffman J. Cancer caused by low-dose radiation: an independent analysis of the problem. M.: Socio-ecological union, 1994;354.
  43. Streffer C. Genetische pradisposition und strahlenempfindlichkeit bei normalen geweben. Strahlenther. Oncol. 1997;173(9):462−468. doi: 10.1007/BF03038185
  44. Lazarev AF, Shoikhet YaN, Petrova VD, Pisareva LF. Thyroid cancer in the Altai region. Barnaul: Altays. state honey. un-t RIO; 2003. (In Russ).
  45. Bacher-Stier C, Riccabona G, Totsch M, Kemmler G, Oberaigner W, Moncayo R. Incidence and clinical characteristics of thyroid carcinoma after iodine prophylaxis in endemic goiter country. Thyroid. 1997;7(5):733−741. doi: 10.1089/thy.1997.7.733
  46. Cho YA, Kim J. Dietary factors influencing thyroid cancer risk: a meta-analysis. Nutr Cancer. 2015;67(5):811−817. doi: 10.1080/01635581.2015.1040517
  47. Galanti MR, Hansson L, Begstrom R, et al. Diet and risk of papillary and follicular thyroid carcinoma: a population- based case-control study in Sweden and Norway. Cancer Causes Control. 1997;8(2):205−214. doi: 10.1023/a:1018424430711
  48. Truong T, Rougier W, Dubourdieu D, et al. Time trends and geographic variations for thyroid cancer in New Caledonia, a very high incidence area (1985-1999). European Journal of Cancer Prevention. 2007;16(1):62−70. doi: 10.1097/01.cej.0000236244.32995.e1
  49. Truong T, Dubourdieu D, Rougier W, Guenel P. The role of dietary iodine and cruciferous vegetables in thyroid cancer: a nationwide case-control study in New Caledonia. Cancer Causes Control. 2010;21(8):1183−1192. doi: 10.1007/s10552-010-9545-2
  50. Son H, Lee H, Kang K, Lee I. The risk of thyroid cancer and obesity: a nationwide population-based study using the Korea National Health Insurance Corporation cohort database. Surg. Oncol. 2018;27(2):166–171. doi: 10.1016/j.suronc.2018.03.001
  51. Kim W, Jong S. Mechanisms linking obesity and the development and progression of thyroid cancer in mouse models. Horm Cancer. 2018;9(2):108−116. doi: 10.1007/s12672-017-0320-7
  52. Schmid D, Ricci C, Behrens G, Leitzmann MF. Adiposity and risk of thyroid cancer: a systematic review and meta-analysis. Wtо Rev. 2015;16(12):1042−1054. doi: 10.1111/obr.12321
  53. Tresallet C, Seman M, Tissier F, Buffet C, Lupinacci RM, Vuarnesson H, et al. The incidence of papillary thyroid carcinoma and outcomes in operative patients according to their body mass indice. Surgery. 2014;156(5):1145–1152. doi: 10.1016/j.surg.2014.04.020
  54. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. N Engl J. Body fatness and cancer – viewpoint of the IARC Working Group. Med. Published Online. 2016;375(8):794–798 doi: 10.1056/NEJMsr1606602
  55. Pergola GD, Silvestris F. Obesity as a major risk factor for cancer. Journal of Obesity. 2013;2013:291546. doi: 10.1155/2013/291546
  56. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of Obesity among Adults and Youth: United States, 2015–2016. NCHS Data Brief. 2017:(288):1–8. https://pubmed.ncbi.nlm.nih.gov/29155689/
  57. Kitahara CM, Pfeiffer RM, Sosa JA, Shiels MS. Impact of Overweight and Obesity on US Papillary Thyroid Cancer Incidence Trends (1995-2015). J Natl Cancer Inst. 2020;112(8):810–817. doi: 10.1093/jnci/djz202
  58. Stagnato-Green A, Abalovich M, Alexander E, et al. Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and Postpartum. Thyroid. 2011;21(10):1081–1125. doi: 10.1089/thy.2011.0087
  59. Azizi F. The occurrence of permanent thyroid insufficiency in patients with subclinical postpartum thyroiditis. Eur J Endocrinol. 2005;153(3):367–371. doi: 10.1530/eje.1.01976
  60. Xu W, Chen Z, Li N, Liu H, Huo L, et al. Relationship of anthropometric measurements to thyroid nodules in a Chinese population. BMJ Open. 2015;5(12). doi: 10.1136/bmjopen-2015-008452
  61. Deng Y, Li H, Wang M, et al. Global burden of thyroid cancer from 1990 to 2017. JAMA Netw Open. 2020;3(6):e25301641. doi: 10.1001/jamanetworkopen.2020;8759
  62. Abdrashitova AT, Panova TN, Diakova ON, et al. Approaches to early diagnosis of thyroid cancer. Kuban Scientific Medical Bulletin. 2018;25(3):139–148. doi: 10.25207/1608-6228-2018-25-3-139-148
  63. Yakushina VD, Lerner LV, Kazubskaya TP. Molecular and genetic structure of follicular cell carcinoma of the thyroid gland. Clinical and experimental thyroidology. 2016;12(2):55–64. doi: 10.14341/ket2016255-64
  64. Haugen BR, Alexander EK, Bible EK, et al. American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133. doi: 10.1089/thy.2015.0020
  65. Hsiao SJ, Nikiforov YE. Molecular Approaches to Thyroid Cancer Diagnosis. Endocr Relat Cancer. 2014;21(5):301–313. doi: 10.1530/ERC-14-0166
  66. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184–199. doi: 10.1038/nrc3431
  67. Golbert L, de Cristo AP, Faccin CS, et al. Serum TSH levels as a predictor of malignancy in thyroid nodules: A prospective study. PLoS One. 2017;12(11). doi: 10.1371/journal.pone.0188123
  68. Alzahrani AS, Alsaadi R, Murugan AK, Sadiq BB. Promoter Mutations in Thyroid Cancer. Horm Cancer. 2016;7(3):165–177. doi: 10.1007/s12672-016-0256-3
  69. Vuong HG, Duong UNP, Altibi AMA, et al. A meta-analysis of prognostic roles of molecular markers in papillary thyroid carcinoma. Endocr Connect. 2017;6(3):8-17. doi: 10.1530/EC-17-0010
  70. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–580. doi: 10.1038/ nrendo.2011;142.
  71. Maximo V, Botelo T, Capela J, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich tumours of the thyroid. Br J Cancer. 2005;92(10):1892–1898. doi: 10.1038/sj.bjc.6602547
  72. Haugen BR, Sawka AM, Alexander EK, et al. American Thyroid Association Guidelines on the Management of Thyroid Nodules and Differentiated Thyroid Cancer Task Force Review and Recommendation on the Proposed Renaming of Encapsulated Follicular Variant Papillary Thyroid Carcinoma Without Invasion to Noninvasive Follicular Thyroid Neoplasm with Papillar. Thyroid. 2017;27(4):481–483. doi: 10.1089/thy.2016.0628
  73. Sleptsov IV. Thyroid nodules. Modern principles of diagnosis and treatment. Moscow: Elit. 2014. (In Russ).
  74. Ageev IS. Oncological and endocrinological approaches to the diagnosis and treatment of early thyroid cancer in goiter endemia. [dissertation]. Moscow, 1992. (In Russ).
  75. Yamashita H, Noguchi S, Watanabe S, et al. Thyroid cancer associated with adenomatous goiter: an analysis of incidence and clinical factors. Surg. Today. 1997;27(6):495–499. doi: 10.1007/BF02385801

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The number of newly detected cases and the number of deaths from thyroid cancer in the world, 2020. WHO, Globocan, 2020. https://gco.iarc.fr/today/data/factsheets/cancers/32-Thyroid-fact-sheet.pdf.

Download (376KB)
3. Fig. 2. Incidence of thyroid cancer in the world in men and women, standardized indicators by age, per 100,000 population, world standard, 2020. https://gco.iarc.fr/today/data/factsheets/cancers/32-Thyroid-fact-sheet.pdf.

Download (204KB)
4. Fig. 3. Morbidity and mortality from thyroid cancer in the world, standardized indicators by age, per 100,000 population, world standard, both sexes https://gco.iarc.fr/today/data/factsheets/cancers/32-Thyroid-fact-sheet.pdf.

Download (207KB)
5. Fig. 4. Key points of pathogenesis of malignant neoplasms.

Download (265KB)
6. Fig. 5. Distribution of effective doses of external irradiation of the population of the Altai Territory from the explosion of 29.08.1949.

Download (237KB)
7. Fig. 6. Medical-territorial zones of the Altai Territory: I – Barnaul, II – Aleyskaya, III – Slavgorodskaya, IV – Rubtsovskaya (it also includes model zone VI), V – Biysk.

Download (101KB)
8. Fig. 7. Sequential model of thyroid cancer progression.

Download (141KB)

Copyright (c) 2021 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies