Features of the neutrophil granulocyte phenotype in children with infectious mononucleosis

封面

如何引用文章

全文:

详细

The course of infectious diseases caused by viruses, and their common outcome is determined by the activity of the inflammatory reaction which occurs both at the local and systemic levels. However, the features of neutrophil functions during inflammatory reaction are virtually unknown in the patients with infectious mononucleosis (IM), caused by Epstein–Barr virus (EBV). Hence, the aim of our study was to evaluate some characteristics of phenotypic spectrum of blood neutrophils in children with IM. Patients and methods. We examined 84 children aged 3 to 11 years with EBV infection with moderate or severe clinical course of the disease. All patients exhibited a positive test for EBV DNA in blood lymphocytes and appropriate serological markers of acute EBV infection. The control group consisted of 40 conditionally healthy children at the similar age range. The study of neutrophil phenotype was carried out by flow cytometry using direct immunofluorescence of whole peripheral blood samples.

A study of the neutrophil phenotype with a combination of two functional antigens (CD64 and CD32) has revealed that in children with IM, regardless of age, the main fraction of blood neutrophils are double-negative cells, whereas in healthy children it consists of CD64-CD32+ neutrophils. The main fraction of neutrophils in the paired combination of CD64 and CD11b antigens in sick children aged 3-6 and 7-11 years was similar to the healthy controls (CD64-CD11b+), but with a change in the content of minor cell fractions. The number of CD64-CD15+ neutrophils (main fraction of cells in healthy children) proved to be significantly reduced in the IM patients of both age groups. However, we have revealed a marked increase in the level of double-negative cells for the CD64 and CD15 antigens. At the same time, the content of double-negative neutrophils for these markers was also increased in IM children of both age groups. The cells with CD11b-CD15+ and CD11b+CD15+ phenotypes comprised the main fractions in IM, as studied by a paired combination of CD11b and CD15 antigens; in healthy children – only CD11b+CD15+ neutrophils are detected.

The phenotypic changes of neutrophils during IM suggest a decreased migratory ability of cells with high activity of proinflammatory functions. The established ontogenetic features of the neutrophil phenotype are significantly changed in the children with IM, probably, due to specific immunopathogenesis of the viral infection. The detected changes in phenotypic composition of neutrophils associated with IM may be caused both by the features of protective reaction of innate immune cells and pathogenic effects of the virus itself upon blood neutrophils.

作者简介

Andrei Savchenko

Research Institute of Medical Problems of the North, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: aasavchenko@yandex.ru

PhD, MD (Medicine), Professor, Head, Laboratory of Cellular Molecular Physiology and Pathology

俄罗斯联邦, Krasnoyarsk

G. Martynova

V. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: doc-martynova@yandex.ru

PhD, MD (Medicine), Professor, Head, Department of Childhood Infectious Diseases

俄罗斯联邦, Krasnoyarsk

L. Ikkes

V. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: likkes@bk.ru

Assistant Professor, Department of Сhildhood Infectious Diseases with a PE-course

俄罗斯联邦, Krasnoyarsk

V. Belenyuk

Research Institute of Medical Problems of the North, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences

Email: dyh.88@mail.ru

Junior Research Associate, Laboratory of Cellular Molecular Physiology and Pathology

俄罗斯联邦, Krasnoyarsk

A. Borisov

Research Institute of Medical Problems of the North, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences

Email: 2410454@mail.ru

PhD (Medicine), Leading Research Associate, Laboratory of Cellular Molecular Physiology and Pathology

俄罗斯联邦, Krasnoyarsk

参考

  1. Демина О.И., Чеботарева Т.А., Мазанкова Л.Н., Тетова В.Б., Учаева О.Н. Инфекционный мононуклеоз у детей: клинико-лабораторная характеристика в зависимости от этиологии и фазы инфекционного процесса // Инфекционные болезни, 2020. Т. 18, № 3. С. 62-72. [Demina O.I., Chebotareva T.A., Mazankova L.N., Tetova V.B., Uchaeva O.N. Infectious mononucleosis in children: clinical and laboratory characteristics depending on the disease etiology and phase of infection. Infektsionnye bolezni = Infectious Diseases, 2020, Vol. 18, no. 3, pp. 62-72. (In Russ.)]
  2. Дроздова Н.Ф., Фазылов В.Х. Инфекционный мононуклеоз, обусловленный вирусом Эпштейна−Барр: клинико-патогенетические аспекты (обзор литературы) // Вестник современной клинической медицины, 2018. Т. 11, № 3. С. 59-65. [Drozdova N.F., Fazyilov V.H. Infectious mononucleosis caused by the Epstein−Barr virus: clinical and pathogenetic aspects (literature review). Vestnik sovremennoy klinicheskoy meditsiny = Bulletin of Modern Clinical Medicine,2018, Vol. 11, no. 3, pp. 59-65. (In Russ.)]
  3. Иккес Л.А., Мартынова Г.П., Савченко А.А. Дисфункция нейтрофилов периферической крови у больных при вирусной Эпштейна-Барр инфекции // Вопросы практической педиатрии, 2019. Т. 14, № 5. С. 21-25. [Ikkes L.A., Martynova G.P., Savchenko A.A. Dysfunction of peripheral blood neutrophils in patients with Epstein-Barr virus infection. Voprosy prakticheskoy pediatrii = Clinical Practice in Pediatrics, 2019, Vol. 14, no. 5, pp. 21-25. (In Russ.)]
  4. Козлов В.А., Тихонова Е.П., Савченко А.А., Кудрявцев И.В., Андронова Н.В., Анисимова Е.Н., Головкин А.С., Демина Д.В., Здзитовецкий Д.Э., Калинина Ю.С., Каспаров Э.В., Козлов И.Г., Корсунский И.А., Кудлай Д.А., Кузьмина Т.Ю., Миноранская Н.С., Продеус А.П., Старикова Э.А., Черданцев Д.В., Чесноков А.Б., Шестерня П.А., Борисов А.Г. Клиническая иммунология. Практическое пособие для инфекционистов. Красноярск: Поликор, 2021. 563 с. [Kozlov V.A., Tikhonova E.P., Savchenko A.A., Kudryavtsev I.V., Andronova N.V., Anisimova E.N., Golovkin A.S., Demina D.V., Zdzitovetsky D. E., Kalinina Yu.S., Kasparov E.V., Kozlov I.G., Korsunsky I.A., Kudlai D.A., Kuzmina T.Yu., Minoranskaya N.S., Prodeus A.P., Starikova E.A., Cherdantsev D.V., Chesnokov A.B., Shesternya P.A., Borisov A.G. Clinical immunology. A practical guide for infectious disease specialists]. Krasnoyarsk: Policor, 2021. 563 p.
  5. Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа // Медицинская иммунология, 2015. Т. 17, № 1. С. 19-26. [Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 1, pp. 19-26. (In Russ.)] doi: 10.15789/1563-0625-2015-1-19-26.
  6. Нестерова И.В., Чудилова Г.А., Русинова Т.В., Павленко В.Н., Юцкевич Я.А., Барова Н.К., Тараканов В.А. Ремоделлинг фенотипа субпопуляций нейтрофильных гранулоцитов CD64-CD32+CD16+CD11B+HГ CD64+CD32+CD16+CD11B+HГ в созданной de novo экспериментальной модели вирусно-бактериальной инфекции в системе in vitro // Инфекция и иммунитет, 2021. Т. 11, № 1. C. 101-110. [Nesterova I.V., Chudilova G.A., Rusinova T.V., Pavlenko V.N., Yutskevich Ya.A., Barova N.K., Tarakanov V.A. Phenotype remodeling in neutrophilic granulocyte subsets CD64-CD32+CD16+CD11B+NG, CD64+CD32+CD16+CD11B+ NG in de novo experimental model of viral-bacterial infection in vitro. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, Vol. 11, no. 1, pp. 101-110. (In Russ.)] doi: 10.15789/2220-7619-ROT-1517.
  7. Савченко А.А., Борисов А.Г., Кудрявцев И.В., Гвоздев И.И., Мошев А.В. Взаимосвязь фенотипа и метаболизма нейтрофилов крови у больных раком почки // Медицинская иммунология, 2020. Т. 22, № 5. С. 887-896. [Savchenko A.A., Borisov A.G., Kudryavtsev I.V., Gvozdev I.I., Moshev A.V. Immunophenotype and metabolism are linked in peripheral blood neutrophils from patients with kidney cancer. Meditsinskaya immunologiya = Medical Immunology (Russia), 2020, Vol. 22, no. 5, pp. 887-896.(In Russ.)] doi: 10.15789/1563-0625-IAM-2037.
  8. Bakarozi M., Mavropoulos A., Bogdanos D.P., Dalekos G.N., Rigopoulou E.I. p38 Mitogen-activated protein kinase impairment of innate immune cells is a characteristic feature of HBeAg-negative chronic hepatitis B. J. Viral. Hepat., 2020, Vol. 27, no. 1, pp. 52-60.
  9. Damania B., Kenney S.C., Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell, 2022, Vol. 185, no. 20, pp. 3652-3670.
  10. Gardiman E., Bianchetto-Aguilera F., Gasperini S., Tiberio L., Scandola M., Lotti V., Gibellini D., Salvi V., Bosisio D., Cassatella M.A., Tamassia N. SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion. Cells, 2022, Vol. 11, no. 23, 3785. doi: 10.3390/cells11233785.
  11. Gasparoto T.H., Dalboni T.M., Amôr N.G., Abe A.E., Perri G., Lara V.S., Vieira N.A., Gasparoto C.T., Campanelli A.P. Fcγ receptors on aging neutrophils. J. Appl. Oral. Sci., 2021, Vol. 29, e20200770. doi: 10.1590/1678-7757-2020-0770.
  12. Goretti Riça I., Joughin B.A., Teke M.E., Emmons T.R., Griffith A.M., Cahill L.A., Banner-Goodspeed V.M., Robson S.C., Hernandez J.M., Segal B.H., Otterbein L.E., Hauser C.J., Lederer J.A., Yaffe M.B. Neutrophil heterogeneity and emergence of a distinct population of CD11b/CD18-activated low-density neutrophils after trauma. J. Trauma Acute Care Surg., 2023, Vol. 94, no. 2, pp. 187-196.
  13. Hayashida E., Ling Z.L., Ashhurst T.M., Viengkhou B., Jung S.R., Songkhunawej P., West P.K., King N.J.C., Hofer M.J. Zika virus encephalitis in immunocompetent mice is dominated by innate immune cells and does not require T or B cells. J. Neuroinflammation, 2019, Vol. 16, no. 1, 177. doi: 10.1186/s12974-019-1566-5.
  14. Kabanov D.S., Grachev S.V., Prokhorenko I.R. Monoclonal antibody to CD14, TLR4, or CD11b: Impact of epitope and isotype specificity on ROS generation by human granulocytes and monocytes. Oxid. Med. Cell. Longev., 2020, Vol. 2020, 5708692. doi: 10.1155/2020/5708692.
  15. Kapoor D., Shukla D. Neutrophil extracellular traps and their possible implications in ocular herpes infection. Pathogens, 2023, Vol. 12, no. 2, 209. doi: 10.3390/pathogens12020209.
  16. Nan J., Xing Y.F., Hu B., Tang J.X., Dong H.M., He Y.M., Ruan D.Y., Ye Q.J., Cai J.R., Ma X.K., Chen J., Cai X.R., Lin Z.X., Wu X.Y., Li X. Endoplasmic reticulum stress induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology, 2018, Vol. 154, no. 1, pp. 144-155.
  17. Naughton P., Healy M., Enright F., Lucey B. Infectious Mononucleosis: diagnosis and clinical interpretation. Br. J. Biomed. Sci., 2021, Vol. 78, no. 3, pp. 107-116.
  18. Patnaik R., Azim A., Agarwal V. Neutrophil CD64 a diagnostic and prognostic marker of sepsis in adult critically ill patients: a brief review. Indian J. Crit. Care Med., 2020, Vol. 24, no. 12, pp. 1242-1250.
  19. Sim H., Jeong D., Kim H.I., Pak S., Thapa B., Kwon H.J., Lee K. CD11b deficiency exacerbates methicillin-resistant staphylococcus aureus-induced sepsis by upregulating inflammatory responses of macrophages. Immune Netw., 2021, Vol. 21, no. 2, e13. doi: 10.4110/in.2021.21.e13.
  20. Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin. Cytom., 2018, Vol. 94, no. 4, pp. 637-651.
  21. Szlasa W., Wilk K., Knecht-Gurwin K., Gurwin A., Froń A., Sauer N., Krajewski W., Saczko J., Szydełko T., Kulbacka J., Małkiewicz B. Prognostic and therapeutic role of CD15 and CD15s in cancer. Cancers (Basel), 2022, Vol. 14, no. 9, 2203. doi: 10.3390/cancers14092203.

版权所有 © Савченко А., Мартынова Г., Иккес Л., Беленюк В., Борисов А., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##