Effect of graphene oxide nanoparticles on apoptosis of T-lymphocytes and Jurkat cells

封面

如何引用文章

全文:

详细

Graphene and its derivatives are materials with unique physicochemical properties. A detailed study of these materials allows to consider them prospective biomedical agents for targeted drug and gene delivery, photothermal therapy of cancer, bioimaging, etc. However, this requires a comprehensive studies of their effects on the body tissues, including cells of the immune system.

The aim of our research was to stydy the effects of nanoparticles based on pegylated graphene oxide (GO) upon apoptosis of T lymphocytes derived from blood of healthy donors and Jurkat 5332 cell line. Comparison of these cells will extend our knowledge of the effects of nanomaterials on the cells, and to respond the question, what results obtained with continuous cell lines are valid for normal non-malignant cells. In this work, we used GO nanoparticles (100-200 nm, 1-5 ìm) coated with linear (LP-GO) and branched (BP-GO) polyethylene glycol (PEG). The cells were cultured for 24 hours at 37 °C and 5% CO2 with nanoparticles at concentrations of 5 and 25 ìg/mL. Viability and early and late apoptosis of incubated Jurkat cells and CD3+ cells from healthy donors were assessed by flow cytometry. It was found that the small nanoparticles coated with linear PEG at high concentrations (25 ìg/mL) could significantly reduce the number of live cells and increase the number of cells in late apoptosis. At the same time, large nanoparticles coated with branched PEG at high concentrations (25 ìg/mL) increased the percentage of T cells in early apoptosis.

Meanwhile, the GO nanoparticles at both concentrations did not affect the viability and apoptosis of Jurkat cells, regardless of the size, concentration, and type of surface function of the particles.

The obtained results suggest that GO nanoparticles exert different effects upon normal and malignant lymphocytes of T lineage. One may assume that these discrepancies could be explained by greater resistance of tumor cells compared to normal T cells. These findings suggests that studies of nanomaterials upon living cells should not be limited to experiments on cell lines, since their properties may significantly differ from those of non-malignant cells.

作者简介

Darya Usanina

Institute of Ecology and Genetic of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences; Perm State University

编辑信件的主要联系方式.
Email: usanina_d@mail.ru
ORCID iD: 0000-0003-0436-0890

Junior Research Associate, Laboratory of Molecular Immunology

俄罗斯联邦, 13 Golev St., Perm 614081, Пермь; 15, st. Bukirev, Perm

Sofya Uzhviyuk

Perm State University

Email: kochurova.sofja@yandex.ru

Engineer, Laboratory of Cellular Immunology and Nanobiotechnology

15, st. Bukirev, Perm

Svetlana Zamorina

Institute of Ecology and Genetic of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences; Perm State University

Email: mantissa7@mail.ru

PhD, MD (Biology), Leading Research Associate, Laboratory of Cellular Immunology and Nanobiotechnology, Professor, Department of Microbiology and Immunology

俄罗斯联邦, 13 Golev St., Perm 614081, Пермь; 15, st. Bukirev, Perm

参考

  1. Заморина С.А., Храмцов П.В., Раев М.Б., Тимганова В.П., Бочкова М.С., Нечаев А.И., Шунькин Е.О., Хазиахматова О.Г., Малащенко В.В., Литвинова Л.С. Взаимодействие наночастиц оксида графена с клетками линии Jurkat в системе Cell-IQ // Доклады российской академии наук. Науки о жизни, 2021. Т. 501. C. 78-84. [Zamorina S.A., Khramtsov P.V., Rayev M.B., Timganova V.P., Bochkova M.S., Nechaev A.I., Shunkin E.O., Khaziakhmatova O.G., Malashchenko V.V., Litvinova L.S. Graphene oxide nanoparticles interaction with Jurkat cell line in Cell-IQ system. Doklady rossiyskoy akademii nauk. Nauki o zhizni = Reports of the Russian Academy of Sciences. Life Sciences, 2021, Vol. 501, pp. 78-84. (In Russ.)]
  2. Ужвиюк С.В., Храмцов П.В., Раев М.Б., Тимганова В.П., Бочкова М.С., Хазиахматова О.Г., Малащенко В.В., Литвинова Л.С., Заморина С.А. Взаимодействие наночастиц оксида графена с мононуклеарными клетками человека в системе Cell-IQ // Клеточные технологии в биологии и медицине, 2023. № 1. [Uzhviyuk S.V., Khramtsov P.V., Rayev M.B., Timganova V.P., Bochkova M.S., Khaziakhmatova O.G., Malashchenko V.V., Litvinova L.S., Zamorina S.A. Graphene oxide nanoparticles interaction with human mononuclear cells in Cell-IQ system. Kletochnye tekhnologii v biologii i meditsine = Cellular Technologies in Biology and Medicine, 2023, Vol. 1. (In Russ.)]
  3. Храмцов П.В., Раев М.Б., Тимганова В.П., Бочкова М.С., Заморина С.А. Взаимодействие наночастиц оксида графена с клетками иммунной системы // Гены и клетки, 2020. Т. 15, № 3. C. 29-38. [Khramtsov P.V., Rayev M.B., Timganova V.P., Bochkova M.S., Zamorina S.A. Interaction of graphene oxide nanoparticles with cells of the immune system. Geny i kletki = Genes and Cells, 2020, Vol. 15, pp. 29-38. (In Russ.)]
  4. Cai X., Tan S., Yu A., Zhang J., Liu J., Mai W., Jiang Z. Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity. Chem. Asian J., 2012, Vol. 7, no. 7, pp. 1664-1670.
  5. Ding Z., Zhang Z., Ma H., Chen Y. In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood T lymphocytes and serum albumin. ACS Appl. Mater. Interfaces, 2014, Vol. 6, no. 22, pp. 19797-19807.
  6. Hong B.J., Compton O.C., An Z., Eryazici I., Nguyen S.T. Successful Stabilization of Graphene Oxide in Electrolyte Solutions: Enhancement of biofunctionalization and cellular uptake. ACS Nano, 2012, Vol. 6, no. 1, pp. 63-73.
  7. Khramtsov P., Bochkova M., Timganova V., Nechaev A., Uzhviyuk S., Shardina K., Maslennikova I., Rayev M., Zamorina S. Interaction of graphene oxide modified with linear and branched PEG with monocytes isolated from human blood. Nanomaterials, 2022, Vol. 12, no. 1, 126. doi: 10.3390/nano12010126.
  8. Kiew S.F., Kiew L.V., Lee H.B., Imae T., Chung L.Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control. Release, 2016, Vol. 226, pp. 217-228.
  9. Lenardo M., Chan K.M., Hornung F., McFarland H., Siegel R., Wang J., Zheng L. Mature T lymphocyte apoptosis – immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev. Immunol., 1999, Vol. 17, pp. 221-253.
  10. Liao C., Li Y., Tjong S.C. Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci., 2018, Vol. 19, no. 11, 3564. doi: 10.3390/ijms19113564.
  11. Ou L., Lin S., Song B., Liu J., Lai R., Shao L. The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int. J. Nanomedicine, 2017, Vol. 12, pp. 6633-6646.
  12. Rhazouani A., Gamrani H., El Achaby M., Aziz K., Gebrati L., Uddin M.S., Aziz F. Synthesis and toxicity of graphene oxide nanoparticles: a literature review of in vitro and in vivo studies. Biomed Res Int., 2021, Vol. 2021, 5518999. doi: 10.1155/2021/5518999.

补充文件

附件文件
动作
1. JATS XML
2. Figure_1. Effect of graphene oxide on the viability of T-lymphocytes from the blood of healthy donors and Jurkat cells

下载 (189KB)
3. Figure_2. Fig. 2. Effect of graphene oxide on early and late apoptosis of T-lymphocytes and Jurkat cells

下载 (386KB)

版权所有 © Усанина Д., Ужвиюк С., Заморина С., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##