Influence of macrophage modulation on the state of extra islet insulin-producing system in hypergycemia

封面

如何引用文章

全文:

详细

Restoring of insulin-synthesizing cell pool by means of macrophage activity modulation can be a promising direction in the treatment of diabetes mellitus. Modeling of type 2 diabetes mellitus in rats (110 mg / kg of nicotinamide and 65 mg / kg of streptozotocin) caused a spontaneous compensatory increase in the number of extra islet insulin-producing cells up to 30 days, followed by a decrease in the number of these cells by 60 days without enhancing their functional activity. Modulation of macrophage activity with the administration of aminophthalhydrazide (2 mg / kg, 20 injections) to diabetic rats was accompanied by an increase in the number of the extra islet insulin-producing cells, the accumulation of insulin in all the studied groups of these cells, and a reduction in hyperglycemia.

作者简介

K. Sokolova

Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

编辑信件的主要联系方式.
Email: noemail@neicon.ru
俄罗斯联邦

A. Belousova

Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences

Email: noemail@neicon.ru
俄罗斯联邦

I. Gette

Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: noemail@neicon.ru
俄罗斯联邦

I. Danilova

Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: noemail@neicon.ru
俄罗斯联邦

M. Abidov

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: noemail@neicon.ru
俄罗斯联邦

参考

  1. Chera S., Herrera P. L. Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Curr. Opin. Genet. Dev. 2016, 40, 1–10.
  2. Thowfeequ S., Myatt E. J., Tosh D. Transdiff erentiation in developmental biology, disease, and in therapy. Dev Dyn. 2007, 236, 3208–3217.
  3. Ungefroren H., Fandrich F. The programmable cell of monocytic origin (PCMO): a potential adult stem/ progenitor cell source for the generation of islet cells. Adv. Exp. Med. Biol. 2010, 654, 667–82.
  4. Yamada T., Cavelti-Weder C., Caballero F., Lysy P. A., Guo L. et al. Reprogramming mouse cells with a pancreatic duct phenotype to insulin-producing ?-like cells. Endocrinology. 2015, 156(6), 2029–38.
  5. Teichenne J., Morro M., Casellas A., Jimenez V., Tellez N. et al. Identifi cation of miRNAs involved in reprogramming acinar cells into insulin producing cells. PLoS One. 2015, 10(12): e0145116.
  6. Klein D., Alvarez-Cubela S., Lanzoni G., Vargas N., Prabakar K. R. et al. BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion. Diabetes. 2015, 64(12), 4123–34.
  7. Sasaki S., Miyatsuka T., Matsuoka T. A., Takahara M., Yamamoto Y. et al. Activation of GLP-1 and gastrin signalling induces in vivo reprogramming of pancreatic exocrine cells into beta cells in mice. Diabetologia. 2015, 58(11), 2582–91.
  8. Lemper M., Leuckx G., Heremans Y., German M. S., Heimberg H. et al. Reprogramming of human pancreatic exocrine cells to ?-like cells. Cell Death Diff er. 2015, 22(7), 1117–1130.
  9. Jukic T., Ihan A., Jukic D. Tetrahydrophthalazine derivative sodium nucleinate exert its anti-infl ammatory eff ects through inhibition of oxidative burst in human monocytes. Coll. Antropol. 2012, 36, 409–412.
  10. Данилова И. Г., Блинкова Н. Б., Гетте И. Ф., Пьянкова З. А., Белоусова А. В. и др. Влияние активации макрофагов на морфофункциональное состояние тучных клеток печени крыс с аллоксановым диабетом. Российский иммунологический журнал. 2016, 3, 244–246. [Danilova I. G., Blinkova N. B., Gette I. F., P’yankova Z. A., Belousova A. V. et al. Impact of macrophage activation on the mast cell morphofunctional state in liver of alloxanised diabetic rats. Russian Immunological Journal. 2016, 3, 244–246. Russian].
  11. Danilova I. G., Sarapultsev P. A., Medvedeva S. U., Gette I. F., Bulavintceva T. S. et al. Morphological restructuring of myocardium during the early phase of experimental diabetes mellitus. Anat Rec (Hoboken). 2015, 298(2), 396–407.
  12. Danilova I. G., Bulavintceva T. S., Gette I. F., Medvedeva S. Y., Emelyanov V. V. et al. Partial recovery from alloxan-induced diabetes by sodium phthalhydrazide in rats. Biomed. Pharmacother. 2017, 95, 103–110.
  13. Bouwens L., Pipeleers D. G. Extra-insular beta cells associated with ductules are frequentin adult human pancreas. Diabetologia. 1998, 41, 452–459.
  14. Булавинцева Т. С. Роль макрофагов в процессе поддержания общей численности ?-клеток поджелудочной железы при аллоксановом диабете. Симбиоз Россия 2011: материалы IV Всероссийского с международным участием конгресса студентов и ас пи ран тов-био ло гов. Изд-во Воронежского государственного университета. Воронеж 2011, Т. 2, 8–10. [Bulavintseva T. S. The role of macrophages in the process of maintaining the total number of pancreatic ?-cells in alloxan diabetes. Symbiosis Russia 2011: materials of the IV Russian with the international participation congress of students and postgraduate biologists. Publishing house of Voronezh State University. Voronezh 2011, V. 2, 8–10. Russian].
  15. Спасов А. А., Воронкова М. П., Сингур Г. Л., Чепляева Н. И., Чепурнова М. В. Экспериментальная модель сахарного диабета типа 2. Биомедицина. 2011, 3, 12–18. [Spasov A. A., Voronkova M. P., Singur G. L., Cheplyaeva N. I., Chepurnova M. V. Experimental model of type 2 diabetes mellitus. Biomedicine. 2011, 3, 12–18. Russian].

版权所有 © Sokolova K..., Belousova A..., Gette I..., Danilova I..., Abidov M..., 2018

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##