CHARACTERISTICS OF IMMUNE RESPONSE INDUCED BY GMDP PEPTIDE MIMETIC RN: A COMPARATIVE ANALYSIS WITH MURAMYLPEPTIDES

封面

如何引用文章

全文:

详细

To study the mechanism of action of the GMDP peptide mimetic RN, its eff ect on the expression level of mRNA of the pro-infl ammatory cytokines IL-1β and TNF-α and some molecules involved in the activation of the NF-kB signaling pathway in human leukemic monocyte cells THP-1 was evaluated. For comparison, GMDP itself and its two analogues with well-characterized biological activity, GMDPacid and GMDP-Lys, were used. All compounds demonstrated signifi cant diff erences during the development of the immune response: GMDP-Lys turned out to be the strongest stimulator of the immune response; GMDP-acid to a greater extent enhanced the expression of the p100/p52 subunit (NF-kB2) and to a lesser extent the expression of IL-1β in comparison with GMDP; the peculiarities of peptide RN response were low level of IL-1β production and stimulation of the adapter protein RIP2 of innate immunity NOD2 receptor. All compounds studied are valuable tools for fi nding new ways for immune response correction.

作者简介

L. Alekseeva

M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, RAS

编辑信件的主要联系方式.
Email: luda.alekseeva@mail.ru

Ph.D, senior researcher, Laboratory of Peptide Chemistry,

117997, Moscow, Miklukho-Maklaya ul., 16/10

俄罗斯联邦

E. Meshcheryakova

M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: fake@neicon.ru

Ph.D., researcher, Laboratory of Peptide Chemistry,

Moscow

俄罗斯联邦

A. Laman

Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: fake@neicon.ru

senior researcher, Laboratory of Immunochemistry,

Pushchino, Moscow region

俄罗斯联邦

T. Andronova

Joint-Stock Company “PEPTEK”

Email: fake@neicon.ru

Ph.D., president,

Moscow

俄罗斯联邦

V. Ivanov

M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: fake@neicon.ru

academician, Leader of Laboratory of Peptide Chemistry,

Moscow

俄罗斯联邦

参考

  1. Grubbs H., Whitten R. A. Physiology, Active Immunity. StatPearls Publishing; Treasure Island (FL) 2018.
  2. Belkaid Y., Harrison O. J. Homeostatic Immunity and the Microbiota. Immunity 2017, 46(4), 562–576.
  3. Yang, Han. Z., Oppenheim J. J. Alarmins and immunity. Immunol Rev. 2017, 280(1), 41–56.
  4. Tang J., Wu Z. Y., Dai R. J., Ma J., Gong G. Z. Hepatitis B virus-persistent infection and innate immunity defect: Cell-related or virus-related? World J. Clin. Cases 2018, 6(9), 233–241.
  5. Man S. M. Infl ammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol. Hepatol. 2018, 15(12), 721–737.
  6. McGonagle D., Watad A., Savic S. Novel immunological based classification of rheumatoid arthritis with therapeutic implications. Autoimmun. Rev. 2018, 17(11), 1115–1123.
  7. Ozinsky A., Smith K. D., Hume D., Underhill D. M. Cooperative induction of pro-infl ammatory signaling by Toll-like receptors. J Endotoxin Res. 2000, 6(5), 393–396.
  8. Patin E. C., Orr S. J., Schaible U. E. Macrophage inducible C-Type Lectin as a multifunctional player in immunity. Front. Immunol. 2017, 8, 861.
  9. Elinav E., Strowig T., Henao-Mejia J., Flavell R. A. Regulation of the antimicrobial response by NLR proteins. Immunity 2011, 34, 665–679.
  10. Liu Y., Olagnier D., Lin R. Host and Viral Modulation of RIG-I–Mediated Antiviral Immunity. Front. Immunol. 2017, 7, 662.
  11. Poltorak A., He X., Smirnova I., Liu M. Y., Van H. C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998, 282, 2085–2088.
  12. Dziarski R. Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol. Life Sci. 2003, 60(9), 1793–804.
  13. Panaro M. A., Acquafredda A., Sisto M., Lisi. S, Maffione A. B., Mitolo V. Biological role of the N-formyl peptide receptors. Immunopharmacol. Immunotoxicol. 2006, 28, 103–127.
  14. Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato. S, Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S. A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408, 740–745.
  15. Girardin S. E., Boneca I. G., Garneiro L. A., Antignac A., Jehanno M., Viala J., Tedin K., Labigne A., Zahringer U., Coyle A. J., DiStefano P. S., Bertin J., Sansonetti P. J., Philpott D. J. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 2003, 300, 1584–1587.
  16. Girardin S. E., Boneca I. G., Viala J., Chamaillard M., Labigne A., Thomas G., Philpott D. J., Sansonetti P. J. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003, 278, 8869–8872.
  17. Barnich N., Aguirre J. E., Reinecker H. C., Xavier R., Podolsky D. K. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor- {kappa}B activation in muramyl dipeptide recognition. J. Cell Biol. 2005, 170, 21–26.
  18. Chen G., Shaw M. H., Kim Y. G., Nuñez G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 2009, 4, 365–98.
  19. Ростовцева Л. И., Андронова Т. М., Малькова В. П., Сорокина И. Б., Иванов В. Т. Синтез и противовопухолевое действие гликопептидов, содержащих N-ацетилглюкозаминил-(β1→4)-N-аце тил му рамил-дисахаридное звено. Биоорган. химия 1981, 7(12), 1843–1858.
  20. Ламан А. Г., Шепеляковская А. О., Бозиев Х. М., Савинов Г. В., Бровко Ф. А., Несмеянов В. А. Метод получения адъювантно активных пептидов – миметиков GMDP с использованием моноклональных антител и комбинаторных библиотек пептидов в формате фагового дисплея. Биоорган. химия 2010, 36(2), 170–177.
  21. Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) Method. Methods 2001, 25(4), 402–408.
  22. Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29(9), e45.
  23. Laman A. G., Shepelyakovskaya A. O., Boziev Kh. M., Savinov G. V., Baidakova L. K., Chulin A. N., Chulina I. A., Korpela T., Nesmeyanov V. A., Brovko F. A. Structural modification eff ects on bioactivities of the novel 15-mer peptide adjuvant. Vaccine 2011, 29(44), 7779–7784.
  24. Мещерякова Е. А., Гурьянова С. В., Макаров Е. А., Андронова Т. М., Иванов В. Т. Структурно-функци о наль ное исследование глюкозаминилмурамоилпептидов. Влияние химической модификации N-ацетилглюкозаминил-N-ацетил му ра мо ил пепти да на его иммуномодулирующие свойства in vivo и in vitro. Биоорган. химия 1991, 17(9), 1157–1165.
  25. Fritz J. H., Girardin S. E., Fitting C., Werts C., MenginLecreulx D., Caroff M., Cavaillon J. M., Philpott D. J., Adib-Conquy M. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 2005, 35(8), 2459–2470.
  26. Мещерякова Е. А., Алексеева Л. Г., Андронова Т. М. Роль мурамилпептидов в клеточной модели воспалительного иммунного ответа, Российский иммунологический журнал, 2015, 9(18), 3, 301–323.
  27. Concetti J., Wilson C. L. NFKB1 and Cancer: Friend or Foe? Cells 2018, 7(9), pii: E133.
  28. Martinon F., Agostini L., Meylan E., Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 2004, 14(21), 1929–1934.

版权所有 © Alekseeva L.G., Meshcheryakova E.A., Laman A.G., Andronova T.M., Ivanov V.T., 2019

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##