Mitochondrial uncoupling, a new element in pathogenesis of metabolic syndrome: a pilot study

Cover Page

Cite item

Full Text

Abstract

Obesity and insulin resistance are the main factors in development of metabolic syndrome (MetS). In patients with MetS, there is an active accumulation of free fatty acids in the liver, which may lead to disturbances in homeostasis and metabolism of hepatocytes, thus resulting in mitochondrial dysfunction, oxidative stress, and cellular apoptosis. Mitochondrial dysfunction has been extensively studied in the context of pathogenetic features of metabolic syndrome. However, the processes of mitochondrial uncoupling remain unclear. Mitochondrial uncoupling (MU) is a process associated with a decrease in ATP synthesis and reactive oxygen species (ROS) in mitochondria. It is mediated by proteins from the UCP (uncoupling proteins) family, as well as ANT (ADP/ATP translocase). “Mild” MU is necessary for maintaining normal mitochondrial function, whereas “severe” MU may lead to mitochondrial dysfunction. Thus, the aim of the present study was to investigate the expression levels of SIRT1 V1 deacetylase, transcription factors PGC-1α, PPAR-α, PPAR-γ that stimulate lipogenesis and β-oxidation of FFAs, and expression of some genes encoding mitochondrial uncouplers ANT2 and UCP2 in the liver of patients with MetS. The study included two groups, as follows: patients with MetS (inclusion criteria: BMI > 30 kg/m2, along with type 2 diabetes and/or fasting blood glucose > 5.5 mmol/L), and a control group (BMI < 30 kg/m2, absence of infectious and chronic diseases). Biochemical analysis of blood parameters was conducted using the Furuno CA-180 biochemical analyzer (Furuno Electric Company, Japan) with DiaSys test systems (DiaSys Diagnostic Systems, Holzheim, Germany). The expression levels of the genes of interest in liver biopsies were assessed using quantitative RT-PCR with SYBR Green (Evrogen, Russia).

In patients with MetS, a significant increase (compared to the control group) in expression level of the PPAR-γ transcription factor was found, being associated with de novo lipogenesis in the liver, as well as increased expression of mitochondrial ANT2 uncoupler gene. Expression levels of other genes (SIRT1 V1, PGC-1α, PPAR-α, UCP2) measured in liver biopsies from the patients with MetS did not show significant changes. An increased expression of the ANT2 gene in MetS patients may be related to both compensatory protective mechanisms, e.g., activation of “mild” MU, and pathological processes resulting from “strong” MU. Further studies are needed to investigate the effects of ANT2 and UCP2 on the cellular metabolism (ATP production, ROS generation, development of oxidative stress), both directly in human liver tissue, and in cell cultures. This article presents for the first time the results concerning expression of mitochondrial uncoupler genes (ANT2, UCP2) in the liver of patients with MetS.

About the authors

S. S. Voronova

Immanuel Kant Baltic Federal University

Email: mbograya@mail.ru

Student

Russian Federation, Kaliningrad

M. M. Bograya

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: mbograya@mail.ru

Junior Researcher, Center of Immunology and Cell Biotechnology

Russian Federation, Kaliningrad

M. A. Vulf

Immanuel Kant Baltic Federal University

Email: mbograya@mail.ru

PhD (Biology), Senior Researcher, Center of Immunology and Cell Biotechnology

Russian Federation, Kaliningrad

A. M. Gorbacheva

Immanuel Kant Baltic Federal University

Email: mbograya@mail.ru

Student

Russian Federation, Kaliningrad

N. D. Gazatova

Immanuel Kant Baltic Federal University

Email: mbograya@mail.ru

PhD (Biology), Head, Laboratory of Experimental Blood Preparations, Center of Immunology and Cell Biotechnology

Russian Federation, Kaliningrad

G. L. Kuznetsov

Central City Clinical Hospital

Email: mbograya@mail.ru

PhD (Medicine), Deputy Chief Physician for Surgery

Russian Federation, Kaliningrad

L. S. Litvinova

Immanuel Kant Baltic Federal University

Email: mbograya@mail.ru

PhD, MD (Medicine), Associate Professor, Head, Center of Immunology and Cell Biotechnology

Russian Federation, Kaliningrad

References

  1. Литвинова Л.С., Вульф М.А., Шунькина Д.А., Комар А.А., Тодосенко Н.М., Затолокин П.А., Миронюк Н.И., Газатова Н.Д., Кириенкова Е.В. Патофизиология обмена веществ: Учебно-методическое пособие. Калининград: БФУ им. И. Канта, 2021. 111 с. [Litvinova L.S. Vulf M.A., Shunkina D.A., Komar A.A., Todosenko N.M., Zatolkin P.A., Mironuk N.I., Gazatova N.D., Kirienkova E.V. Pathophysiology of metabolism: Educational and Methodological Guide]. IKBFU, Kaliningrad, 2021. 111 p.
  2. Asrih M., Jornayvaz F. R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol. Cell. Endocrinol., 2015, Vol. 418, no. 1, pp. 55-65.
  3. Azzu V., Jastroch M., Divakaruni A.S., Brand M.D. The regulation and turnover of mitochondrial uncoupling proteins. BBA Bioenergetics, 2010, Vol. 6, no. 1797, pp. 785-791.
  4. Bertholet A.M., Chouchani E.T., Kazak L., Angelin A., Fedorenko A., Long J.Z., Vidoni S., Garrity R., Cho J., Terada N., Wallace D.C., Spiegelman B.M., Kirichok Y. H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature, 2019, Vol. 7766, no. 571, pp. 515-520.
  5. Cho J., Zhang Y., Park S.-Y., Joseph A.-M., Han C., Park H.-J., Kalavalapalli S., Chun S.-K., Morgan D., Kim J.S., Someya S., Mathews C.E., Lee Y.J., Wohlgemuth S.E., Sunny N.E., Lee H.-Y., Choi C.S., Shiratsuchi T., Oh S.P., Terada N. Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance. Nat. Commun., 2017, Vol. 8, 14477. doi: 10.1038/ncomms14477.
  6. Emre Y., Nübel T. Uncoupling protein UCP2: When mitochondrial activity meets immunity. FEBS Lett., 2010, Vol. 8, no. 584, pp. 1437-1442.
  7. Fedorenko A., Lishko P.V., Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell, 2012, Vol. 2, no. 151, pp. 400-413.
  8. Jabůrek M., Varecha M., Gimeno R.E., Dembski M., Jezek P., Zhang M., Burn P., Tartaglia L.A., Garlid K.D. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. JBC, 1999, Vol. 37, no. 274, pp. 26003-26007.
  9. Kim H. S., Jeong H.W., Son T.G., Park H.R., Ji S.T., Pokharel Y.R., Jeon H.M., Kang K.W., Kang H.S., Chang S.C., Kim H.S., Chung H.Y., Lee J.W. The hepatoprotective effects of adenine nucleotide translocator-2 against aging and oxidative stress. Free Radic. Res., 2012, Vol. 1, no. 46, pp. 21-29.
  10. Kreiter J., Tyschuk T., Pohl E. E. Uncoupling Protein 3 catalyzes the exchange of C4 metabolites similar to UCP2. Biomolecules, 2023, Vol. 1, no. 14, 21. doi: 10.3390/biom14010021
  11. Mookerjee S.A., Divakaruni A.S., Jastroch M., Brand M.D. Mitochondrial uncoupling and lifespan. Mech. Ageing Dev., 2010, Vol. 7-8, no. 131, pp. 463-472.
  12. Nesci S., Rubattu S. UCP2, a member of the mitochondrial uncoupling proteins: an overview from physiological to pathological roles. Biomedicines, 2024, Vol. 6, no. 12, 1307. doi: 10.3390/biomedicines12061307.
  13. Vozza A., Parisi G., De Leonardis F., Lasorsa F.M., Castegna A., Amorese D., Marmo R., Calcagnile V.M., Palmieri L., Ricquier D., Paradies E., Scarcia P., Palmieri F., Bouillaud F., Fiermonte G. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. PNAS, 2014, Vol. 3, no. 111, pp. 960-965.
  14. Wang M., Zhao J., Chen J., Long T., Xu M., Luo T., Che Q., He Y., Xu D. The role of sirtuin1 in liver injury: molecular mechanisms and novel therapeutic target. PeerJ, 2024, Vol. 12, e17094. doi: 10.7717/peerj.17094.
  15. Wang Y.-X. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res., 2010, Vol. 2, no. 20, pp. 124-137.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Expression of genes of interest

Download (461KB)

Copyright (c) 2025 Voronova S.S., Bograya M.M., Vulf M.A., Gorbacheva A.M., Gazatova N.D., Kuznetsov G.L., Litvinova L.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».