Features of mitochondrial state in CD4+Т lymphocyte subsets

Cover Page

Cite item

Full Text

Abstract

Peripheral blood CD4+T lymphocytes are heterogenous, including naive, central memory, effector memory, and terminally differentiated effector cells. Each subset performs different functions and possesses unique metabolic properties. Mitochondria are vital organelles of CD4+T lymphocytes, playing critical roles in metabolism, energy and active oxygen species production, cellular respiration, proliferation, differentiation, and apoptosis. The use of mitochondrial-selective fluorescent dyes in combination with labeled monoclonal antibodies is a relatively accessible and simple way to study a range of mitochondrial parameters in CD4+T cells of varying maturity by flow cytometry. The aim of this study was to investigate mitochondrial indices in different CD4+T lymphocyte subsets. We obtained mononuclear cells from peripheral blood of nine relatively healthy volunteers. By flow cytometry using commercial fluorescent dyes MitoTracker Green FM and MitoTracker Deep Red FM, we determined the mass and membrane potential of mitochondria in the total pool of CD4+T lymphocytes and in their subsets: naive (CD45R0-CCR7+), central memory (CD45R0+CCR7+), effector memory (CD45R0+CCR7-), and terminally differentiated effectors (CD45R0-CCR7-). We show that in healthy individuals, central and effector memory CD4+T lymphocytes compared to naive cells have increased mitochondrial mass and membrane potential. The mass of organelles in functionally different memory CD4+T cell subsets vary significantly: it is lower in central memory lymphocytes than in effector memory cells. Nevertheless, two subsets have similar mitochondrial membrane potential. Terminally differentiated effectors differ from other CD4+T lymphocyte subsets in unique characteristics of mitochondria: despite high mass, they have a reduced membrane potential. This feature may be linked to cells being prepared for programmed cell death during the terminal differentiation stage.

About the authors

L. B. Korolevskaya

Institute of Ecology and Genetic of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: bioqueen@mail.ru

PhD (Medicine), Research Associate, Laboratory of Ecological Immunology

Russian Federation, Perm

K. V. Shmagel

Institute of Ecology and Genetic of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: bioqueen@mail.ru

PhD, MD (Medicine), Head, Laboratory of Ecological Immunology

Russian Federation, Perm

References

  1. Королевская Л.Б., Сайдакова Е.В., Шмагель Н.Г., Шмагель К.В. Оценка состояния митохондрий CD4+ и CD8+ Т-лимфоцитов здоровых лиц // Цитология, 2022. Т. 64, № 3. C. 232-239. [Korolevskaya L.B., Saidakova E.V., Shmagel N.G., Shmagel K.V. Assessment of Mitochondrial Condition in CD4+ and CD8+ T Cells from Healthy Subjects. Tsitologiya = Cytology, 2022, Vol. 64, no. 31, pp. 2325-2239. (In Russ.)]
  2. Breda C.N.S., Davanzo G.G., Basso P.J., Saraiva Câmara N.O., Moraes-Vieira P.M.M. Mitochondria as central hub of the immune system. Redox Biol, 2019, Vol. 26, e101255. doi: 10.1016/j.redox.2019.101255.
  3. Caldwell C.C., Kojima H., Lukashev D., Armstrong J., Farber M., Apasov S.G., Sitkovsky M.V. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J. Immunol., 2001, Vol. 167, no. 11, pp. 6140-6149.
  4. Callender L.A., Carroll E.C., Bober E.A., Akbar A.N., Solito E., Henson S.M. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell, 2020, Vol. 19, no. 2, e13067. doi: 10.1111/acel.13067
  5. Cottet-Rousselle C., Ronot X., Leverve X., Mayol J.F. Cytometric assessment of mitochondria using fluorescent probes. Cytometry A, 2011, Vol. 79, no. 6, pp. 405-425.
  6. Di Mitri D., Azevedo R.I., Henson S.M., Libri V., Riddell N.E., Macaulay R., Kipling D., Soares M.V., Battistini L., Akbar A.N. Reversible senescence in human CD4+CD45RA+CD27- memory T cells. J. Immunol., 2011, Vol. 187, no. 5, pp. 2093-2100.
  7. Dimeloe S., Frick C., Fischer M., Gubser P.M., Razik L., Bantug G.R., Ravon M., Langenkamp A., Hess C. Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. Eur. J. Immunol., 2014, Vol. 44, no. 12, pp. 3614-3620.
  8. Dimeloe S., Mehling M., Frick C., Loeliger J., Bantug G.R., Sauder U., Fischer M., Belle R., Develioglu L., Tay S., Langenkamp A., Hess C. The immune-metabolic basis of effector memory CD4+ T cell function under hypoxic conditions. J. Immunol., 2016, Vol. 196, no. 1, pp. 106-114.
  9. Gottlieb E., Armour S.M., Harris M.H., Thompson C.B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ., 2003, Vol. 10, no. 6, pp. 709-717.
  10. Jameson S.C., Masopust D. Understanding subset diversity in T cell memory. Immunity, 2018, Vol. 48, no. 2, pp. 214-226.
  11. Sallusto F., Lenig D., Förster R., Lipp M., Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999, Vol. 401, no. 6754, pp. 708-712.
  12. Solaini G., Sgarbi G., Lenaz G., Baracca A. Evaluating mitochondrial membrane potential in cells. Biosci. Rep., 2007, Vol. 27, no. 1-3, pp. 11-21.
  13. Shmagel K.V., Saidakova E.V., Korolevskaya L.B., Shmagel N.G., Chereshnev V.A., Anthony D.D., Lederman M.M. Influence of hepatitis C virus coinfection on CD4+ T cells of HIV-infected patients receiving HAART. AIDS, 2014, Vol. 28, no. 16, pp. 2381-2388.
  14. Sukumar M., Liu J., Mehta G.U., Patel S.J., Roychoudhuri R., Crompton J.G., Klebanoff C.A., Ji Y., Li P., Yu Z., Whitehill G.D., Clever D., Eil R.L., Palmer D.C., Mitra S., Rao M., Keyvanfar K., Schrump D.S., Wang E., Marincola F.M., Gattinoni L., Leonard W.J., Muranski P., Finkel T., Restifo N.P. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab., 2016, Vol. 23, no. 1, pp. 63-76.
  15. Xiao B., Deng X., Zhou W., Tan E.K. Flow cytometry-based assessment of mitophagy using mitotracker. Front. Cell. Neurosci., 2016, Vol. 10, e76. doi: 10.3389/fncel.2016.00076.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Assessment of mitochondrial mass in CD4+T cells using the MitoTracker Green dye

Download (61KB)
3. Figure 2. Assessment of mitochondrial membrane potential in CD4+T cells using the MitoTracker Deep Red dye

Download (58KB)

Copyright (c) 2024 Korolevskaya L.B., Shmagel K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies