Surfactant system of the lungs in antiphospholipid syndrome under the conditions of administration of the immunosuppressive agent FTY-720

Cover Page

Cite item

Full Text

Abstract

Antiphospholipid syndrome (APS) is a thrombophilic disease in the pathogenesis of which the leading role belongs to antibodies reacting with antigenic determinants of phospholipids. APS is a systemic autoimmune pathology that involves many organs and systems in the pathological process, including the respiratory system. Given the fact that the lung surfactant is mainly represented by phospholipids, it can be presented that the surfactant is damaged and its functioning is impaired in APS. The results of our experiments showed that in antiphospholipid syndrome, there was a decline in the functional activity of the surfactant and a change in its biochemical composition. The introduction of FTY-720 normalized the parameters of the lung surfactant system, which were changed during the modeling of antiphospholipid syndrome. The work shows the effectiveness of the therapy of this autoimmune pathology with immunosuppressor FTY-720, which is a structural analogue of endogenous sphingosine. The effect of the drug is based on the modulation of sphingosine-1 phosphate receptors of lymphocytes. The main effect of the immunosuppressor FTY-720 as a result of receptor interaction is a decrease in the number of circulating lymphocytes. The research involved 85 white random bred male rats: Group 1 (APS modeling) consisted of 30 rats who were intravenously injected with cardiolipin antigen at a total dose of 0.2-0.4 mg per rat every other day for three weeks; Group 2 (control) consisted of 25 rats who were injected with 0.9% NaCl solution according to the same scheme; and Group 3 including 30 rats in which APS was combined with the administration of the immunosuppressive agent FTY-720 (intraperitoneally 1 mg/kg of animal weight). Three weeks later, there was an operation conducted with the purpose of extraction of the bronchopulmonary complex. After extraction of the bronchopulmonary complex, its triple lavage was carried out with 0.9% NaCl solution. The material of the experimental study was a lavage liquid, in which the biophysical and biochemical parameters of the surfactant were studied. Langmuir–Blodgett method was used to identify static, minimal and maximal surface tension. These figures were used to identify integrative indicator reflecting surfactant characteristics – the Clements stability index. The fractional composition of surfactant phospholipids was determined by thin-layer chromatography. The results of our experiments showed that in antiphospholipid syndrome, there was a decline in the functional activity of the surfactant and a change in its biochemical composition. The introduction of FTY-720 normalized the parameters of the lung surfactant system, which were changed during the modeling of antiphospholipid syndrome.

About the authors

M. A. Urakova

Izhevsk State Medical Academy

Author for correspondence.
Email: urakova-mariya@yandex.ru

PhD, MD (Medicine), Associate Professor, Department of Pathological Physiology and Immunology

Russian Federation, Izhevsk

V. R. Mustaev

Izhevsk State Medical Academy

Email: urakova-mariya@yandex.ru

3rd-Year Student of the Faculty of General Medicine

Russian Federation, Izhevsk

G. R. Karimova

Izhevsk State Medical Academy

Email: urakova-mariya@yandex.ru

3rd-Year Student of the Faculty of General Medicine

Russian Federation, Izhevsk

M. G. Kuznetsova

Izhevsk State Medical Academy

Email: urakova-mariya@yandex.ru

3rd-Year Student of the Faculty of General Medicine

Russian Federation, Izhevsk

E. N. Rakhmatullina

Izhevsk State Medical Academy

Email: urakova-mariya@yandex.ru

3rd-Year Student of the Faculty of General Medicine

Russian Federation, Izhevsk

S. A. Oleneva

Izhevsk State Medical Academy

Email: urakova-mariya@yandex.ru

3rd-Year Student of the Faculty of General Medicine

Russian Federation, Izhevsk

K. V. Urakova

Izhevsk State Medical Academy

Email: urakova-mariya@yandex.ru

1st-Year Student of the Faculty of General Medicine

Russian Federation, Izhevsk

References

  1. Брындина И.Г., Уракова М.А., Лебедева Н.В. Фосфолипиды эритроцитов, плазмы крови, сурфактанта и коагуляционной активность легких при экспериментальном антифосфолипидном синдроме // Медицинская иммунология, 2015. Т. 17, № S. C. 122. [Bryndina I.G., Urakova M.A., Lebedeva N.V., Phospholipids of erythrocytes, blood plasma, surfactant and coagulation activity of the lungs in experimental antiphospholipid syndrome. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. S, p. 122. (In Russ.)]
  2. Кондрахин И.П., Архипов А.В., Левченко В.И. Методы ветеринарной клинической лабораторной диагностики. М.: Колос, 2004. 520 с. [Kondrahin I.P., Arhipov A.V., Levchenko V.I. Methods of veterinary clinical laboratory diagnostics]. Moscow: Kolos, 2004. 520 p. Насонов Е.Л. Антифосфолипидный синдром. М.: Литтерра, 2004. 424 с.
  3. Уракова М.А. Метаболические функции и водный баланс легких при экспериментальном антифосфолипидном синдроме // Вестник Уральской медицинский академической науки, 2012. Т. 39, № 2. С. 66. [Urakova M.A. Metabolic activity and water balance of lung in experimental antiphospholipid syndrome. Vestnik Uralskoy meditsinkoy akademicheskoy nauki = Journal of Ural Medical Academic, 2012, Vol. 39, no. 2, p. 66. (In Russ.)]
  4. Уракова М.А., Брындина И.Г. Метаболическая активность и водный баланс легких при моделировании аутоиммунной патологии у крыс // Вестник Тверского государственного университета. Серия: Биология и экология, 2013. № 29. С. 272-276. [Urakova M.A., Bryndina I.G. Metabolic activity and water balance of lungs in modeling of autoimmune pathology in rats. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Biologiya i ekologiya = Bulletin of Tver State University. Series: Biology and ecology, 2013, no. 2, pp. 272-276. (In Russ.)]
  5. Уракова М.А., Брындина И.Г. Влияние финголимода на сурфактант и гемостаз-регулирующую активность легких при экспериментальном аутоиммунном энцефаломиелите // Патогенез, 2020. Т. 18, № 4. С. 43-48. [Urakova M.A., Bryndina I.G., The influence of fingolimod on surfactant and hemostasis-regulating activity of the lung in experimental autoimmune encephalomyelitis. Patogenez = Pathogenesis, 2020, Vol. 18, no. 4, pp. 43-48. (In Russ.)]
  6. Al-Saiedy M., Tarokh A., Nelson S., Hossini K., Green F., Ling Ch.-Ch. The role of multilayers in preventing the premature buck-ling of the pulmonary surfactant. Biochim. Biophys. Acta Biomembr., 2017, Vol. 1859, no. 8, pp. 1372-1380.
  7. Chaudhry B.Z., Cohen J.A., Conway D.S. Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics, 2017, Vol. 14, no. 4, pp. 859-873.
  8. Chen Z., Zhong M., Luo Y. Determination of rheology and surface tension of airway surface liquid: a review of clinical relevance and measurement techniques. Respir. Res., 2019, Vol. 20, no. 1, 274. doi: 10.1186/s12931-019-1229-1.
  9. Kitamura Y., Nomura M., Shima H. Acute lung injury associated with systemic inflammatory response syndrome following subarachnoid. Neurol. Med. Chir., 2010., Vol. 50, pp. 456-460.
  10. Nomura H., Hirashima Y., Endo S. Anticardiolipin antybody aggravates cerebral vasospasm after subarachnoid hemorrhage in rabbits. Stroke, 1998, Vol. 29, no. 5, pp. 1014-1018.
  11. Scaccabarozzi D., Deroost K., Lays N., Salè F.O., van den Steen, Taramelli D. Altered lipid composition of surfactant and lung tissue in murine experimental malaria-associated acute respiratory distress syndrome. PLoS One, 2015, Vol. 10, no. 12, e0143195. doi: 10.1371/journal.pone.0143195.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Urakova M.A., Mustaev V.R., Karimova G.R., Kuznetsova M.G., Rakhmatullina E.N., Oleneva S.A., Urakova K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».