Involvement of PAR2 in inflammatory mediator release from human blood eosinophils

Cover Page

Cite item

Full Text

Abstract

Proteinase Activated Receptors (PARs) are the members of G-protein-coupled receptor family and can be cleaved by certain serine proteases to expose a tethered ligand domain, which binds and activates the receptors to initiate multiple signaling cascades. There is some evidence that certain proteases may regulate target cells by activating PARs. There are many studies, in which PARs play important roles in inflammation. One study indicated that PAR2 inhibition and deletion significantly suppressed the degree of inflammation due to decreased IL-6 and IL-1β levels. Another study also showed that PAR’s activation could mediate reactive oxygen species production and MAPK signaling leading to alveolar inflammation. In addition, platelet-derived CAPN1 can trigger the vascular inflammation associated with diabetes via cleavage of PAR1 and the release of TNFα from the endothelial cell surface, and sarsasapogenin may alleviate diabetic nephropathy by the downregulation of PAR1. Another Phellodendron amurense bark extract can suppress the particulate matter-induced Ca2+ influx caused by direct action upon PAR2, alleviating inflammation and maintaining homeostatic levels of cell adhesion components. There are also other two antagonists of I-287 and GB88, which can reduce the PAR2-mediated inflammatory reaction. In this study, we tested expression of PARs and IL-5, IL-6, RANTES and ECP release from human blood eosinophils using different enzymes and PAR agonists. The expression of PARs was assessed in human blood eosinophils by flow cytometry and RT-PCR, and the levels of cytokine and eosinophil cationic protein (ECP) in the cultured supernatants were determined with ELISA kits. Flow cytometry shows that human eosinophils express PAR2 protein and do not express PAR1, PAR3 and PAR4 proteins. RT-PCR analysis revealed expression of PAR2 and PAR3 genes in human eosinophils. Tryptase, trypsin and elastase can induce significant IL-5, IL-6 and ECP release. Trypsin and elastase may also stimulate RANTES secretion, but tryptase cannot induce the RANTES secretion. Tryptase, trypsin and elastase-induced cytokine and ECP release from human blood eosinophils most likely occurs via activation of PAR2.

About the authors

Xinyu Hu

Danyang Second People Hospital

Email: wzy0222@gmail.com

BSc, Director of Clinical Lab Center, Permanent, Danyang Second People Hospital, Danyang, Jiangsu, China

Taiwan, Province of China, Danyang, Jiangsu

Haoyang Wang

Department of Pediatrics, Laval University

Author for correspondence.
Email: why1027cn@gmail.com

PhD (Medicine), Director of Centre de Recherche du CHUL (CHUQ), Permanent, Department of Pediatrics, Laval University, Québec, Canada

Canada, Québec, Québec

References

  1. Avet C., Sturino C., Grastilleur S., Gouill C.L., Semache M., Gross F., Gendron L., Bennani Y., Mancini J.A., Sayegh C.E., Bouvier M. The PAR2 inhibitor I-287 selectively targets Gαq and Gα12/13 signaling and has anti-inflammatory effects. Commun. Biol., 2020, Vol. 3, no. 1, 719. doi: 10.1038/s42003-020-01453-8.
  2. Bagher M., Larsson-Callerfelt A.K., Rosmark O., Hallgren O., Bjermer L., Westergren-Thorsson G. Mast cells and mast cell tryptase enhance migration of human lung fibroblasts through protease-activated receptor 2. Cell Commun. Signal., 2018, Vol. 16, no. 1, 59. doi: 10.1186/s12964-018-0269-3.
  3. Bang E., Kim D.H., Chung H.Y. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-B and FoxO6 modulation during skin photoaging. Redox Biol., 2021, Vol. 44, 102022. doi: 10.1016/j.redox.2021.102022.
  4. Belibasakis G.N., Bostanci N., Reddi D. Regulation of protease-activated receptor-2 expression in gingival fibroblasts and Jurkat T cells by Porphyromonas gingivalis. Cell Biol. Int., 2010, Vol. 34, no. 3, pp. 287-292.
  5. Bolton S.J., McNulty C.A., Thomas R.J., Hewitt C.R., Wardlaw A.J. Expression of andfunctional responses to protease-activated receptors on human eosinophils. J. Leukoc. Biol.,2003, Vol. 74, no. 1, pp. 60-68.
  6. Brass L.F., Molino M. Protease-activated G protein-coupled receptors on human platelets and endothelial cells. Thromb. Haemost., 1997, Vol. 78, no. 1, pp. 234-241.
  7. Chhabra J., Li Y.Z., Alkhouri H., Blake A.E., Ge Q., Armour C.L., Hughes J.M. Histamine and tryptase modulate asthmatic smooth muscle GM-CSF and RANTES release. Eur. Respir. J., 2007, Vol. 29, no. 5, pp. 861-870.
  8. Choi J., Moon M.Y., Han G.Y., Chang M.S., Yang D., Cha J. Phellodendronamurense extract protects human keratinocytes from PM2.5-induced inflammation via PAR-2 Signaling. Biomolecules, 2020, Vol. 11, no. 1, 23. doi: 10.3390/biom11010023.
  9. de Almeida A.D., Silva I.S., Fernandes-Braga W., imaFilho A.C.M., Florentino R.O.M., Barra A., de Oliveira Andrade L., Leite M.F., Cassali G.D., Klein A. A role for mast cells and mast cell tryptase in driving neutrophil recruitment in LPS-induced lung inflammation via protease-activated receptor 2 in mice. Inflamm. Res., 2020, Vol. 69, no. 10, pp. 1059-1070.
  10. Dinh Q.T., Cryer A., Trevisani M., Dinh S., Wu S., Cifuentes L.B., Feleszko W.K., Williams A., Geppetti P., Fan Chung K., Heppt W., Klapp B.F., Fischer A. Gene and protein expression of protease-activated receptor 2 in structural and inflammatory cells in the nasal mucosa in seasonal allergic rhinitis. Clin. Exp. Allergy, 2006, Vol. 36, no. 8, pp. 1039-1048.
  11. Hansel T.T., de Vries I.J., Iff T., Rihs S., Wandzilak M., Betz S., Blaser K., Walker C. An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J. Immunol. Methods, 1991, Vol. 145, no. 1-2, pp. 105-110.
  12. He S., Zhang Z., Zhang H., Wei J., Yang L., Yang H., Sun W., Zeng X., Yang P. Analysis ofproperties and proinflammatory functions of cockroach allergens Per a 1.01s. Scand. J. Immunol., 2011, Vol. 74, no. 3, pp. 288-295.
  13. Hurley A., Smith M., Karpova T., Hasley R.B., Belkina N., Shaw S., Balenga N., Druey K.M., Nickel E., Packard B., Imamichi H., Hu Z., Follmann D., McNally J., Higgins J., Sneller M., Lane H.C., Catalfamo M. Enhanced effector function of CD8(+) T cells fromhealthy controls and HIV-infected patients occurs through thrombin activation of protease-activated receptor 1. J. Infect. Dis., 2013, Vol. 207, no. 4, pp. 638-650.
  14. Ishihara H., Connolly A.J., Zeng D., Kahn M.L., Zheng Y.W., Timmons C., Tram T., Coughlin S.R. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature.,1997, Vol. 386, no. 6624, pp. 502-506.
  15. Kahn M.L., Zheng Y.W., Huang W., Bigornia V., Zeng D., Moff S., Farese R.V., Jr, Tam C,, Coughlin S.R. A dual thrombin receptor system for platelet activation. Nature, 1998, Vol. 394, no. 6694, pp. 690-694.
  16. Kalashnyk O., Petrova Y., Lykhmus O., Mikhalovska L., Mikhalovsky S., Zhukova A.,Gnatenko D., Bahou W., Komisarenko S., Skok M. Expression, function and cooperatingpartners of protease-activated receptor type 3 in vascular endothelial cells and B lymphocytes studied with specific monoclonal antibody. Mol. Immunol., 2013, Vol. 54, no. 3-4, pp. 319-326.
  17. Kim J.Y., Sohn J.H., Choi J.M., Lee J.H., Hong C.S., Lee J.S., Park J.W. Alveolar macrophages play a key role in cockroach-induced allergic inflammation via TNF- pathway. PLoS One, 2012, Vol. 7, no. 10, e47971. doi: 10.1371/journal.pone.0047971.
  18. Kim K.K., Turner R., Khazan N., Kodza A., Jones A., Singh R.K., Moore R.G. Role of trypsin and protease-activated receptor-2 in ovarian cancer. PLoS One, 2020, Vol. 15, no. 5, pp. e0232253. doi: 10.1371/journal.pone.0232253.
  19. Kim Y.H., Kang M.K., Lee E.J., Kim D.Y., Oh H., Kim S.I., Oh S.Y., Na W., Shim J.H., Kang I.J., Kang Y.H. Astragalin Inhibits Cigarette Smoke-Induced Pulmonary Thrombosis and Alveolar Inflammation and Disrupts PAR Activation and Oxidative Stress-Responsive MAPK-Signaling. Int. J. Mol. Sci., 2021, Vol. 22, no. 7, 3692. doi: 10.3390/ijms22073692.
  20. Koga H., Miyahara N., Fuchimoto Y., Ikeda G., Waseda K., Ono K., Tanimoto Y., Kataoka M., Gelfand E.W., Tanimoto M., Kanehiro A. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses. Respir. Res. 2013, Vol. 14, no. 1, 8. doi: 10.1186/1465-9921-14-8.
  21. Kyselova A., Elgheznawy A., Wittig I., Heidler J., Mann A.W., Ruf W., Fleming I., Randriamboavonjy V. Platelet-derived calpain cleaves the endothelial protease-activated receptor 1 to induce vascular inflammation in diabetes. Basic Res. Cardiol., 2020, Vol. 115, no. 6, 75. doi: 10.1007/s00395-020-00833-9.
  22. Luo J., Wu X., Liu H., Cui W., Guo W., Guo K., Guo H., Tao K., Li F., Shi Y., Feng D., Yan H., Gao G., Qu Y. Antagonism of Protease-Activated Receptor 4 Protects Against Traumatic Brain Injury by Suppressing Neuroinflammation via Inhibition of Tab2/NF-B Signaling. Neurosci. Bull., 2021, Vol. 37, no. 2, pp. 242-254.
  23. Matos N.A., Silva J.F., Matsui T.C., Damasceno K.A., Duarte I.D., Lemos V.S., Cassali G.D., Klein A. Mast cell tryptase induces eosinophil recruitment in the pleural cavity of mice via proteinase-activated receptor 2. Inflammation., 2013, Vol. 36, no. 6, pp. 1260-1267.
  24. Miike S., McWilliam A.S., Kita H. Trypsin induces activation and inflammatory mediator release from human eosinophils through protease-activated receptor-2. J. Immunol.,2001, Vol. 167, no. 11, pp. 6615-6622.
  25. Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential Proteinase activated receptor. Proc. Natl Acad. Sci. USA., 1994, Vol. 91, no. 20, pp. 9208-9212.
  26. Qiao L., Zhang H., Wu S., He S. Downregulation of protease activated receptor expression and cytokine production in P815 cells by RNA interference. BMC Cell Biol., 2009, Vol. 10, 62. doi: 10.1186/1471-2121-10-62.
  27. Rasmussen U.B., Vouret-Craviari V., Jallat S., Schlesinger Y., Pagès G., Pavirani A., LecocqJ.P., Pouysségur J., van Obberghen-Schilling E. cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett., 1991, Vol. 288, no. 1-2, pp. 123-128.
  28. Roche N., Stirling R.G., Lim S., Oliver B.G., Oates T., Jazrawi E., Caramori G., Chung K.F. Effect of acute and chronic inflammatory stimuli on expression of protease-activated receptors 1 and 2 in alveolar macrophages. J. Allergy Clin. Immunol., 2003, Vol. 111, no. 2, pp. 367-373.
  29. Tang Z.Z., Zhang Y.M., Zheng T., Huang T.T., Ma T.F., Liu Y.W. Sarsasapogenin alleviatesdiabetic nephropathy through suppression of chronic inflammation by down-regulating PAR-1: In vivo and in vitro study. Phytomedicine, 2020, Vol. 78, 153314. doi: 10.1016/j.phymed.2020.153314.
  30. Vliagoftis H., Lacy P., Luy B., Adamko D., Hollenberg M., Befus D., Moqbel R. Mast cell tryptase activates peripheral blood eosinophils to release granule-associated enzymes. Int. Arch. Allergy Immunol., 2004, Vol. 135, no. 3, pp. 196-204.
  31. Vu T.K., Hung D.T., Wheaton V.I., Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 1991, Vol. 64, no. 6, pp. 1057-1068.
  32. Wang H., He S. Induction of lactoferrin and IL-8 release from human neutrophils by tryptic enzymes via proteinase activated receptor-2. Cell Biol. Int., 2006, Vol. 30, no. 9, pp. 688-697.
  33. Wang Y.J., Yu S.J., Tsai J.J., Yu C.H., Liao E.C. Antagonism of Protease Activated Receptor-2 by GB88 Reduces Inflammation Triggered by Protease Allergen Tyr-p3. Front. Immunol., 2021, Vol. 12, 557433. doi: 10.3389/fimmu.2021.557433.
  34. Wardlaw A.J., Brightling C., Green R., Woltmann G., Pavord I. Eosinophils in asthma and other allergic diseases. Br. Med. Bull., 2000, Vol. 56, no. 4, pp. 985-1003.
  35. Xu W.F., Andersen H., Whitmore T.E., Presnell S.R., Yee D.P., Ching A., Gilbert T., Davie E.W., Foster D.C. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA., 1998, Vol. 95, no. 12, pp. 6642-6646.
  36. Zhang H., Yang X., Yang H., Zhang Z., Lin Q., Zheng Y., Chen S., Yang P., He S. Modulation of mast cell proteinase-activated receptor expression and IL-4 release by IL-12. Immunol. Cell Biol., 2007, Vol. 85, no. 7, pp. 558-566.
  37. Zhu J., Miao X.R., Tao K.M., Zhu H., Liu Z.Y., Yu D.W., Chen Q.B., Qiu H.B., Lu Z.J. Trypsin-protease activated receptor-2 signaling contributes to pancreatic cancer pain. Oncotarget, 2017, Vol. 8, no. 37, pp. 61810-61823.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Expression of PARs protein by flow cytometry analysis on human eosinophils

Download (337KB)
3. Figure 2. mRNA expression of PARs by RT-PCR analysis in human eosinophils

Download (232KB)
4. Figure 3. Effects of tryptase on IL-5 release from human eosinophils

Download (105KB)
5. Figure 4. Effects of tryptase on IL-6 release from human eosinophils

Download (107KB)
6. Figure 5. Effects of tryptase on ECP release from human eosinophils

Download (107KB)
7. Figure 6. Effects of trypsin on IL-5 release from human eosinophils

Download (111KB)
8. Figure 7. Effects of trypsin on IL-6 release from human eosinophils

Download (112KB)
9. Figure 8. Effects of trypsin on RANTES release from human eosinophils

Download (114KB)
10. Figure 9. Effects of trypsin on ECP release from human eosinophils

Download (108KB)
11. Figure 10. Effects of elastase on IL-5 release from human eosinophils

Download (96KB)
12. Figure 11. Effects of elastase on IL-6 release from human eosinophils

Download (95KB)
13. Figure 12. Effects of elastase on RANTES release from human eosinophils

Download (103KB)
14. Figure 13. Effects of elastase on ECP release from human eosinophils

Download (104KB)
15. Figure 14. Effects of PAR2 agonist peptides on IL-5 release from human eosinophils

Download (135KB)
16. Figure 15. Effects of PAR2 agonist peptides on IL-6 release from human eosinophils

Download (137KB)
17. Figure 16. Effects of PAR2 agonist peptides on RANTES release from human eosinophils

Download (145KB)
18. Figure 17. Effects of PAR2 agonist peptides on ECP release from human eosinophils

Download (139KB)

Copyright (c) 2023 Hu X., Wang H.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies