Natural and synthetic peptides in antimicrobial therapy

Cover Page

Cite item

Full Text

Abstract

Antimicrobial function of innate immunity is mediated by the low-molecular weight peptides which are active against bacteria, fungi and some viruses. The review presents data on studies of both natural and synthetic peptides regarding the features of their structure and therapeutic effect. As a rule, the molecules of such peptides are positively charged, due to amino acid radicals capable of protonation. Spatially, antimicrobial peptide molecules are arranged as α-helices or β-layers in separate or compound assemblies. At the same time, short molecular chains, including up to 18 amino acid residues, exist as a linear or cyclic forms, remaining at the level of primary spatial structure. Natural antimicrobial peptides are predominantly produced by neutrophilic granulocytes and macrophages, as well as epithelial cells of the barrier organs. Three families of natural antimicrobial peptides have been most studied: defensins, cathelicidins, and histatins. Defensins are active against Gram-positive and Gram-negative bacteria, viruses and fungi, having anti-inflammatory and immunomodulatory activity. Cathelicidins are chemoattractants and exert antibacterial, immunomodulatory, wound healing, antitumor effects, potentially contributing to the development of autoimmune diseases. Histatins have a pronounced fungicidal effect and prevent the formation of bacterial biofilms. A detailed study on the structure and principles of action of natural antimicrobial peptides made it possible to apply this information for the in vitro synthesis of peptides thus making it possible to create multipurpose drugs based on them. E.g., synthetic peptides WR12 and D-IK8 ensure the delivery of antibiotics to infected or tumor cells, due to permeabilization of cellular membranes. At the same time, a synthetic peptide, acipensin 1, is capable of penetrating into human tumor cells without damaging them. The immunomodulatory peptide glutoxim is effectively used in anti-tuberculosis therapy. ZP2 peptide, the functional site of granulocyte-macrophage colony-stimulating factor is effective against Gram-negative bacteria (K. pneumoniae, P. aeruginosa and A. baumannii) as well as Epstein–Barr virus. Thymic immunoregulatory peptides – bestim, hepon, thymogen and imunofan are inducers of endogenous α- and β-interferon production, inhibit the development of malignant neoplasms, and possess anti-inflammatory activity. Gepon is used in the treatment of viral hepatitis, respiratory and opportunistic infections, croup syndrome and sexually transmitted infections (including genital herpes). Thus, the synthetic antimicrobial peptides are widely used in complex treatment regimens along with conventional antibiotics, antiviral, and antitumor drugs, thus making it possible to achieve higher therapeutic effect.

About the authors

Karina A. Khlystova

Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences

Email: krn2003@bk.ru

Postgraduate Student, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation

Russian Federation, Yekaterinburg

Narine G. Sarkisyan

Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences; Ural State Medical University

Email: narine_25@mail.ru

PhD, MD (Medicine), Professor, Postgraduate Department, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences; Associate Professor, Department of Therapeutic Dentistry and Propedeutics of Dental Diseases, Ural State Medical University, Yekaterinburg, Russian Federation

Russian Federation, Yekaterinburg; Yekaterinburg

Natalia N. Kataeva

Ural State Medical University

Author for correspondence.
Email: kataeva.nn@mail.ru
ORCID iD: 0000-0002-2847-8810

PhD (Chemistry), Associate Professor, Department of General Chemistry, Ural State Medical University, Yekaterinburg, Russian Federation

Russian Federation, Yekaterinburg

References

  1. Артамонов А.Ю., Рыбакин Е.Г., Орлов Д.С., Корнева Е.А. Биологическая активность и молекулярно-клеточные механизмы действия антимикробных пептидов человека и животных // Вестник Санкт-Петербургского университета, 2014. № 1. С. 5-25. [Artamonov A.Yu., Rybakina E.G., Orlov D.S., Korneva E.A. Biological activity and molecular-cellular mechanisms of action of human and animal antimicrobial peptides. Vestnik Sankt- Peterburgskogo universiteta = Bulletin of St. Petersburg University, 2014, no. 1, pp. 5-25. (In Russ.)]
  2. Бибичева Т.В., Лукашов М.И. Клиническая эффективность монотерапии рецидивирующей герпетической инфекции половых органов мочеполового тракта иммуномодулятором «Гепон» // Курский научно-практический вестник «Человек и его здоровье», 2009. № 3. С. 47-54. [Bibicheva T.V., Lukashov M.I. Clinical effect of monoterapy with immunomodulatior “Hepon” in patient with reccurent genital herpes infection. Kurskiy nauchno-prakticheskiy vestnik “Chelovek i ego zdorovye” = Kursk Scientific and Practical Bulletin “Man and his Health”, 2009, no. 3, pp. 47-54. (In Russ.)]
  3. Добрынина М.А., Зурочка А.В., Тяпаева Я.В., Белозерцева Ю.П., Гриценко В.А. Оценка влияния синтетического пептида активного центра гранулоцитарно-макрофагального колониестимулирующего фактора – ZP2 на рост и биопленкообразование клинических изолятов энтеробактерий in vitro // Бюллетень Оренбургского научного центра УрО РАН, 2018. № 4. 17 с. [Электронный ресурс]. Режим доступа: http://elmag.uran.ru:9673/magazine/Numbers/2018-4/Articles/MAD-2018-4.pdf. [Dobrynina M.A., Zurochka A.V., Tyapaeva Ya.V., Belozertseva Yu.P., Gritsenko V.A. Evaluation of the effect of the synthetic peptide of the active center of the granulocyte-macrophage colony-stimulating factor – ZP2 on the growth and biofilm formation of enterobacteria clinical isolates in vitro. Byulleten Orenburgskogo nauchnogo tsentra UrO RAN = Bulletin of the Orenburg Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2018, no. 4, 17 p. [Electronic resource]. Access mode: http://elmag.uran.ru:9673/magazine/Numbers/2018-4/Articles/MAD-2018-4.pdf. (In Russ.)]
  4. Добрынина М.А., Зурочка А.В., Тяпаева Я.В., Белозерцева Ю.П., Мругова Т.М, Гриценко В.А. Антибактериальная активность косметического средства «Ацеграм» в отношении грамотрицательных бактерий // Бюллетень Оренбургского научного центра УрО РАН, 2017. № 4. 13 c. [Электронный ресурс]. Режим доступа: http://elmag.uran.ru:9673/magazine/Numbers/2017-4/Articles/VAG-2017-4.pdf. [Dobrynina M.A., Zurochka A.V., Tyapaeva Ya.V., Belozertseva Yu.P., Mrugova T.M., Gritsenko V.A. Antibacterial activity of cosmetic “Acegram” against gram-negative bacteria. Byulleten Orenburgskogo nauchnogo tsentra UrO RAN = Bulletin of the Orenburg Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2017, no. 4, 13 p. [Electronic resource]. Access mode: http://elmag.uran.ru:9673/magazine/Numbers/2017-4/Articles/VAG-2017-4.pdf. (In Russ.)]
  5. Долгов Г.В., Куликов С.В., Легеза В.И., Малинин В.В., Морозов В.Г., Смирнов В.С., Сосюкин А.Е. Клиническая фармакология Тимогена // Под ред. В.С. Смирнова. СПб., 2003. 103 с. [Dolgov G.V., Kulikov S.V., Legeza V.I., Malinin V.V., Morozov V.G., Smirnov V.S., Sosyukin A.E. Clinical pharmacology of Thymogen / Ed. V.S. Smirnov]. St. Petersburg, 2003. 103 p.
  6. Жаркова М.С., Орлов Д.С., Кокряков В.Н., Шамова О.В. Антимикробные пептиды млекопитающих: классификация, биологическая роль, перспективы практического применения // Весник СПбГУ, 2014. № 1. С. 98-114. [Zharkova M.S., Orlov D.S., Kokryakov V.N., Shamova O.V. Mammalian antimicrobial peptides: classification, biological role, perspectives of practicale use. Vesnik SPbGU = Bulletin of St. Petersburg University, 2014, no. 1, pp. 98-114. (In Russ.)]
  7. Забков О.И., Зурочка В.А., Добрынина М.А., Гриценко В.А., Зурочка А.В. Клинико-диагностические критерии эффективности комплексной этиопатогенетической терапии хронической Эпштейна–Барр вирусной инфекции // Бюллетень Оренбургского научного центра УрО РАН, 2018. № 3. 13 c. [Электронный ресурс]. Режим доступа: http://elmag.uran.ru:9673/magazine/Numbers/2018-3/Articles/ZOI-2018-3.pdf. [Zabkov O.I., Zurochka V.A., Dobrynina M.A., Gritsenko V.A., Zurochka A.V. Clinical diagnostic criteria of efficiency of complex etiopathogenetic therapy of chronic Epstein–Barr viral infection. Byulleten Orenburgskogo nauchnogo tsentra UrO RAN = Bulletin of the Orenburg Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2018, no. 3, 13 p. [Electronic resource]. Access mode: http://elmag.uran.ru:9673/magazine/Numbers/2018-3/Articles/ZOI-2018-3.pdf. (In Russ.)]
  8. Зурочка А.В., Зурочка В.А., Зуева Е.Б., Добрынина М.А., Дукарт В.В., Гриценко В.А. Синтетический пептид активного центра гранулоцитарно-макрофагального колониестимулирующего фактора (гм-ксф) как основа для создания косметических средств нового поколения с комбинированными эффектами – ацеграм-гель и ацеграм-спрей // Российский иммунологический журнал, 2016. Т. 10, № 3. С. 269-272. [Zurochka A.V., Zurochka V.A., Zueva E.B., Dobrynina M.A., Dukardt V.V., Gritsenko V.A. Synthetic peptide of the active сenter of granulocyte- macrophage colony-stimulating factor (gm-csf) as the basis for creation of cosmetics of new generation with the combined effects – atsegram-gel and atsegram-sprey. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2016, Vol. 10, no. 3, pp. 269-272. (In Russ.)]
  9. Зурочка А.В., Зурочка В.А., Зуева Е.Б., Добрынина М.А., Дукардт В.В., Лаврентьева И.Н., Сухобаевская Л.П., Гриценко В.А. Исследование спектра иммунобиологической активности синтетического пептида активного центра гранулоцитарно-макрофагального колониестимулирующего фактора (ГМ-КСФ) как основа для расширения возможностей создания косметических средств нового поколения с комбинированными эффектами // Российский иммунологический журнал, 2017. Т. 11, № 3. С. 377-380. [Zurochka A.V., Zurochka V.A., Zueva E.B., Dobrynina M.A., Dukardt V.V., Lavrentyeva I.N., Sukhobayevskaya L.P., Gritsenko V.A. Research of the spectrum of immunological activity of synthetic peptid the active centre of granulocyte-macrophage colony-stimulating factor (GM-CSF) as a basis for the empowerment of creating cosmetics with a new generation of combined effects. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2017, Vol. 11, no. 3, pp. 377-380. (In Russ.)]
  10. Зурочка В.А., Зурочка А.В., Фомина Л.О., Добрынина М.А., Забков О.И., Гриценко В.А. Киноцидины – цитокины, обладающие антибактериальной и противовирусной активностью // Российский иммунологический журнал, 2019. Т. 13, № 2. С. 781-783. [Zurochka V.A., Zurochka A.V., Fomina L.O., Dobrynina M.A., Zabkov O.I., Gritsenko V.A. Cinetidine – cytokines, antibacterial and antiviral activity. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2019, Vol. 13, no. 2, pp. 781-783. (In Russ.)]
  11. Караулов А.В., Сокуренко С.И. Имунофан: непосредственные и отдаленные результаты лечения больных хроническим бронхитом // Медикал Маркет, 2000. Т. 34. С. 21-24. [Karaulov A.V., Sokurenko S.I. Imunofan: Immediate and long-term results of the treatment of chronic bronchitis. Medikal Market = Medical Market, 2000, Vol. 34, pp. 21-24. (In Russ.)]
  12. Кауров О.А., Кетлинский С.А., Колобов А.А., Симбирцев А.С. Иммуностимулятор и препарат на его основе. 1998. Номер патента: RU 2120298 C1. [Kaurov O.A., Ketlinskij S.A., Kolobov A.A., Simbirtsev A.S. Immunostimulating agent and a preparation based on thereof. 1998. Patent No. RU 2120298 C1].
  13. Кулакова Е.В. Изучение уровня концентрации LL-37 слюны у детей с атопическим дерматитом при различных видах сенсибилизации организма // Dental Forum, 2012. № 3. С. 61. [Kulakova E.V. The study of the level of LL-37 saliva concentration in children with atopic dermatitis with various types of body sensitization. Dental Forum = Dental Forum, 2012, no. 3, p. 61. (In Russ.)]
  14. Мусин Х.Г. Антимикробные пептиды-потенциальная замена традиционным антибиотикам // Инфекция и иммунитет, 2018. Т. 8, № 3. С. 295-308. [Musin Kh.G. Antimicrobial peptides – a potential replacement for traditional antibiotics. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2018, Vol. 8, no. 3, pp. 295-308. (In Russ.)] doi: 10.15789/2220-7619-2018-3-295-308.
  15. Саркисян Н.Г., Катаева Н.Н., Тузанкина И.А., Меликян С.Г. Антимикробные пептиды в терапии слизистой полости рта // Российский иммунологический журнал, 2019. Т. 13, № 2. С. 524-526. [Sarkisyan N.G., Kataev N.N., Tuzankina I.A., Melikyan S.G. Antimicrobial peptides in the treatment of muscular oral cavity. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2019, Vol. 13, no. 2, pp. 524-526. (In Russ.)]
  16. Саркисян Н.Г., Катаева Н.Н., Тузанкина И.А., Меликян С.Г., Зурочка В.А., Зурочка А.В. Оценка эффективности спрея на основе синтетического пептида в комплексном лечении хронического генерализованного пародонтита // Инфекция и иммунитет, 2019. Т. 9, №3-4. С. 549-558. [Sarkisian N.G., Kataeva N.N., Tuzankina I.A., Melikyan S.G., Zurochka V.A., Zurochka A.V. Assessing efficiency of synthetic peptide-containing spray in combination therapy of chronic generalized periodontitis. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, Vol. 9, no. 3-4, pp. 549-558. (In Russ.)] doi: 10.15789/2220-7619-2019-3-4-549-558.
  17. Саркисян Н.Г., Катаева Н.Н., Юффа Е.П., Хлыстова К.А., Пермикина В.Н., Меликян С.Г. Влияние бальзамов ополаскивателей с пептидами на физико-химические свойства смешанной слюны // Врач, 2020. Т. 31, № 5. С. 77–79. [Sarkisyan N.G., Kataeva N.N., Yuffa E.P., Khlystova K.A., Permikina V.N., Melikyan S.G. The effect of oral balms/rinses containing peptides on the physicochemical properties of mixed saliva. Vrach = Doctor, 2020, Vol. 31, no. 5, pp. 77-79. (In Russ.)]
  18. Сергеев О.В., Баринский И.Ф. Cинтетические пептидные вакцины // Вопросы вирусологии, 2016. Т. 61, № 1. С. 5-8. [Sergeev O.V., Barinsky I.F. Synthetic peptide vaccines. Voprosy virusologii = Problems of Virology, 2016, Vol. 61, no. 1, pp. 5-8. (In Russ.)]
  19. Сипайлова О.Ю., Нестеров Д.В. Антимикробные низкомолекулярные пептиды: факторы неспецифической защиты организма животных // Вестник ОГУ, 2013. № 12. С. 169-172. [Sipaylova O.Yu., Nesterov D.V. Antimicrobial low molecular weight peptides – factors of nonspecific protection animal organism. Bulletin of OSU, 2013, no. 12, pp. 169-172. (In Russ.)]
  20. Стручко Г.Ю., Меркулова Л.М., Михайлова М.Н., Мухаммад З. Т-зависимые иммунорегуляторные эффекты полиоксидония и имунофана (обзор литературы) // Вестник Чувашского университета, 2010. № 3. С. 140-145. [Struchko G.Yu., Merkulova L.M., Mikhailova M.N., Muhammad Z. T cell dependent immunoregulatory effects of polyoxidonium and imunofan (review). Vestnik Chuvashskogo universiteta= Bulletin of the Chuvash University, 2010, no. 3, pp. 140-145. (In Russ.)]
  21. Умнякова Е.С., Кудрявцев И.В., Грудинина Н.А., Баландин С.В., Болосов И.А., Пантелеев П.В., Филатенкова Т.А., Орлов Д.С., Цветкова Е.В., Овчинникова Т.В., Кокряков В.Н., Шамова О.В. Интернализация антимикробного пептида Аципенсина 1 в опухолевые клетки человека // Медицинская иммунология, 2016. Т. 18, № 6. С. 575-582. [Umnyakova E.S., Kudryavtsev I.V., Grudinina N.A., Balandin S.V., Bolosov I.A., Panteleev P.V., Filatenkova T.A., Orlov D.S., Tsvetkova E.V., Ovchinnikova T.V., Kokryakov V.N., Shamova O.V. Internalization of antimicrobial peptide Acipensin 1 into human tumor cells. Meditsinskaya immunologiya = Medical Immunology (Russia), 2016, Vol. 18, no. 6, pp. 575-582. (In Russ.)] doi: 10.15789/1563-0625-2016-6-575-582.
  22. Царев В.Н., Давыдова М.М., Николаева Е.Н., Покровский В.Н., Пожарская В.О., Плахтий Л.Я,. Спиранде И.В., Ушаков Р.В., Ипполитов Е.В. Микробиология, вирусология и иммунология полости рта. М.: ГЭОТАР-Медиа, 2013. 576 с. [Tsarev V.N., Davidova M.M., Nikolaeva E.N., Pokrovskiy V.N., Pozharskaya V.O., Plakhty L.Ya., Spirande I.V., Ushakov R.V., Ippolitov E.V. Microbiology, virology and immunology oral cavity]. Moscow: GEOTAR-Media, 2013. 576 p.
  23. Шулятникова О.А., Рогожников Г.И., Косарева П.В., Даймонд Т.А., Кумаланина И.В., Рогожников А.Г. Влияние низкомолекулярного катионного пептида варнерина на показатели периферической крови экспериментальных животных В. (экспериментально-лабораторное исследование) // Уральский медицинский журнал, 2017. Т. 4, № 148. С. 150-154. [Shuliatnikova O.A., Rogoznikov G.I., Kosareva P.V., Daimond T.A., Kumalanina I.V., Rogoznikov A.G. Influence of low-molecular cationic peptide of a varnerin on indicators of peripheral blood of experimental animals (experimental and laboratory research). Uralskiy meditsinskiy zhurnal = Ural Medical Journal, 2017, Vol. 4, no. 148, pp. 150-154. (In Russ.)]
  24. Якубке Х.Д., Ешкайт Х. Аминокислоты. Пептиды. Белки. М.: Мир, 1985. 456 с. [Jakubke H.D., Eshkayt H. Amino acids. Peptides. Squirrels]. Moscow: Mir, 1985. 456 p.
  25. Bernard J.J., Gallo R.L. Protecting the boundary: the sentinel role of host defense peptides in the skin. Cell Mol. Life Sci., 2011, Vol. 68, no. 13, pp. 2189-2199.
  26. Davidson D.J., Currie A.J., Reid G.S., Bowdish D.M., Mac Donald K.L., Ma R.C., Hancock R.E., Speert D.P. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol., 2004, Vol. 172, no. 2, pp. 1146-1156.
  27. Dubos R.J. Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J. Exp. Med., 1939, Vol. 70, no. 1, pp. 1-10.
  28. Easton D.M., Nijnik A., Matthew L. Hancock Mayer and Robert E.W. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol., 2009, Vol. 27, no. 10, pp. 582-590.
  29. Flamm R.K., Rhomberg P.R., Simpson K.M., Farrell D.J., Sader H.S., Jones R.N. In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infection and with selected resistance mechanisms. Antimicrob. Agents Chemother., 2015, Vol. 59, no. 3, pp. 1751-1754.
  30. Gawde U., Chakraborty S., Waghu F.H., Barai R.S., Khanderkar A., Indraguru R., Shirsat T., Idicula-Thomas S. CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res., 2023, Vol. 51, no. D1, pp. D377-D383.
  31. Guaní-Guerra E., Santos-Mendoza T., Lugo-Reyes S.O., Terán L.M. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin. Immunol., 2010, Vol. 135, no. 1, pp. 1-11.
  32. Kahlenberg J.M., Kaplan M.J. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J. Immunol., 2013, Vol. 191, no. 10, pp. 4895-4901.
  33. Kang H.K., Kim C., Seo C.H., Park Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J. Microbiol., 2017, Vol. 55, no. 1, pp. 1-12.
  34. Kataeva N., Sarkisian N., Zurochka V., Zurochka A., Melikyan S. Study of the micelle forming ability of synthetic peptide as a part of the antibacterial drug. AIP Conference Proceedings, 2022, 030035. doi: 10.1063/5.0069591.
  35. Lai Y., Gallo R.L. AMPed Up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 2009, Vol. 30, no. 3, pp. 131-141.
  36. Lei J., Sun L., Huang S., Zhu C., Li P., He J., Mackey V., Coy D.H., He Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 2019, Vol. 11, no. 7, pp. 3919-3931.
  37. Matsumoto T., Kaneko T., Seto M., Wada H., Kobayashi T., Nakatani K., Tonomura H., Tono Y., Ohyabu M., Nobori T., Shiku H., Sudo A., Uchida A., Deborah J., Kurosawa S., Kurosawa S. The membrane proteinase 3 expression on neutrophils was downregulated after treatment with infliximab in patients with rheumatoid arthritis. Clin. Appl. Thromb. Hemost., 2008, Vol. 14, no. 2, pp. 186-192.
  38. Nijnik A., Hancock REW. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg. Health Threats J., 2009, Vol. 2, e1. doi: 10.3134/ehtj.09.001.
  39. Pütsep K., Faye I. Hans G. Boman (1924-2008): pioneer in peptide-mediated innate immune defence. Scand. J. Immunol., 2009, Vol. 70, no. 3, pp. 317-319.
  40. Rahnamaeian M. Antimicrobial peptides: Modes of mechanism, modulation of defense responses. Plant Signal. Behav., 2011. Vol. 6, no. 9, pp. 1325-1332.
  41. Raybak M.I. The efficacy and safety of daptomycin: first in a new class of antibiotics for Gram-positive bacteria. Clin. Microbiol. Infect., 2006, Vol. 12, pp. 24-32.
  42. Schauber J., Gallo R.L. Antimicrobial peptides and the skin immune defense system. J. Allergy Clin. Immunol., 2008, Vol. 122, no. 2, pp. 261-266.
  43. Shamova O.V., Orlov D.S., Balandin S.V., Shramova E.I., Tsvetkova E.V., Panteleev P.V., Leonova Yu.F., Tagaev A.A., Kokryakov V.N. Ovchinnikova Acipensins – novel antimicrobial peptides from leukocytes of the Russian sturgeon Acipenser gueldenstaedtii. Acta Naturae, 2014, Vol. 6, no. 4, pp. 99-109.
  44. van Wetering S., Tjabringa S., Hiemstra P.S. Interaction between neutrophil-delided antimicrobial peptides and airway epithelial cells. J. Leukoc. Biol., 2005, Vol. 77, no. 4, pp. 444-450.
  45. Wan M., van der Does A.M., Tang X., Lindbom L., Agerberth B., Haeggstrom J.Z. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J. Leukoc. Biol., 2014, Vol. 95, no. 6, pp. 971-981.
  46. Wiesner J., Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence., 2010, Vol. 1, no. 5. pp. 440-464.
  47. Zaiou M., Gallo R.L. Cathelicidins, essential gene-encoded mammalian antibiotics. J. Mol. Med. 2002, Vol. 80, no. 9, pp. 549-561.

Copyright (c) 2023 Khlystova K.A., Sarkisyan N.G., Kataeva N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies