Limited mutagenesis of myelokaryocytes following acute external irradiation as a protective mechanism of miliacin in radiation-induced immunosuppression

Cover Page

Cite item

Full Text

Abstract

Antimutagenic effect of the plant triterpenoid miliacin was studied, in order to characterize its protective properties in a model of acute irradiation immunosuppression using outbred male mice. Ionizing irradiation at different doses (0.5; 1.0; 2.0; 4.0 Gy) was used for experimental (miliacin-treated), and control animals that received the miliacin solvent. Miliacin was administered three times intraperitoneally at a single dose of 4.0 mg/kg with 24-hour intervals between injections. The last dose was applied 1 day before irradiation. Myelokaryocytes served as test objects, the analysis of which was carried out 24 hours after irradiation. Miliacin had a certain protective effect by limiting the post-radiation myeloablation, reducing the number of aberrant cells and the total number of aberrations. Protective effect of triterpenoids showed inverse relation to the radiation dose, being most pronounced at the dose of 0.5 Gy. Higher values of chromatid aberrations at radiation doses of 1.0 and 2.0 Gy in animals from the experimental group versus control mice, probably, due to anti-apoptotic effect of the triterpenoid, thus ensuring higher survival rates of mutated cells with severe damage to their genome. The protective effect of miliacin at 24 hours after radiation exposure may indicate its effect on the primary radiochemical stage of radiation injury. It is suggested that the mechanism of protective action of triterpenoid is mediated by its previously shown antioxidant activity, due to its ability to stabilize membranes and normalize expression of genes encoding antioxidant protection enzymes. Thus, the antimutagenic activity of miliacin after irradiation is an important characteristic of its immunoprotective effect during the radiation-induced immunosuppression. With respect to its ability to limit the mutagenic effect, miliacin may be classified as a weak radioprotective antimutagen with a protection efficiency of 20-40% at the dose range of 0.5 to 1.0 Gray.

About the authors

Yu. A. Sarycheva

Orenburg State Medical University

Author for correspondence.
Email: yualsarycheva@mail.ru

PhD (Medicine), Associate Professor, Department of Pathological Physiology

Russian Federation, Orenburg

A. A. Tokareva

Orenburg State Medical University

Email: yualsarycheva@mail.ru

Senior Teacher, Department of Pathological Physiology

Russian Federation, Orenburg

A. G. Shechtman

Orenburg State Medical University

Email: yualsarycheva@mail.ru

PhD, MD (Medicine), Professor, Head, Department of Radiation Diagnostics, Radiation Therapy, Oncology

Russian Federation, Orenburg

T. V. Panfilova

Orenburg State Medical University

Email: yualsarycheva@mail.ru

PhD (Medicine), Associate Professor, Department of Pathological Physiology

Russian Federation, Orenburg

Yu. S. Pimenova

Orenburg State Medical University

Email: yualsarycheva@mail.ru

Assistant Professor, Department of Pathological Physiology

Russian Federation, Orenburg

R. A. Mitrofanov

Orenburg Regional Center of Clinical Oncology

Email: yualsarycheva@mail.ru

Head, Department of Radiotherapy No. 1

Russian Federation, Orenburg

B. A. Frolov

Orenburg State Medical University

Email: yualsarycheva@mail.ru

PhD, MD (Medicine), Professor, Head, Department of Pathological Physiology

Russian Federation, Orenburg

References

  1. Железнова А.Д., Железнов Л.М., Штиль А.А., Фролов Б.А. Морфологические проявления защитного влияния милиацина в лимфоидных органах при воздействии метатрексата // Бюллетень экспериментальной биологии и медицины, 2007. Т. 144, № 10. С. 458-463. [Zheleznova A.D., Zheleznov L.M., Shtil A.A., Frolov B.A. Morphological manifestations for the protective effect of miliacin in organs of immunogenesis after treatment with methotrexate. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 2007, Vol. 144, no. 10, pp. 458-463. (In Russ.)]
  2. Железнова А.Д., Панфилова Т.В., Смолягин А.И., Чайникова И.Н., Штиль А.А., Фролов Б.А. Влияние милиацина на дисфункцию иммунной системы у мышей при действии метотрексата // Иммунология, 2009. № 5. С. 298-302. [Zheleznova A.D., Panfilova T.V., Smolyagin A.I., Chainikova I.N., Shtil A.A., Frolov B.A. Тhe influence of miliacin on dysfunction of the immune system during administration of metоthrexate to mice. Immunologiya = Immunologiya, 2009, no. 5, pp. 298-302. (In Russ.)]
  3. Калинина О.В., Колотова Е.С., Панфилова Т.В., Штиль А.А., Фролов Б.А. Природный тритерпеноид милиацин предотвращает вызванный метатрексатом окислительный стресс и нормализует экспрессию генов cyr-2e1 и глутатионредуктазы в печени // Патологическая физиология и экспериментальная терапия, 2013. № 1. С. 70-74. [Kalinina O.V., Kolotova E.S., Panfilova T.V., Shtil A.A., Frolov B.A. The natural triterpenoid miliacin prevents methotrexate-induced oxidative stress and normalizes the expression of genes encoding the cytochrome P-450 2e1 isoform and glutathione reductase in the liver. Patologicheskaya fiziologiya i eksperimentalnaya terapiya = Pathological Physiology and Experimental Therapy, 2013, no. 1, pp. 70-74. (In Russ.)]
  4. Панфилова Т.В., Штиль А.А., Полосухина Е.Р., Барышников А.Ю., Фролов Б.А. Влияние тритерпеноида милиацина на чувствительность лимфоцитов тимуса и селезенки к апоптозу, индуцированному дексаметазоном // Бюллетень экспериментальной биологии и медицины, 2003. Т. 57, № 10. С. 382-385. [Panfilova T.V., Shtil A.A., Polosukhina E.R., Baryshnikov A.Yu., Frolov B.A. Effect of the triterpenoid miliacin on the sensitivity of thymus and spleen lymphocytes to dexamethasone-induced apoptosis. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 2003, Vol. 57, no. 10, pp. 382-385. (In Russ.)]
  5. Панфилова Т.В., Штиль А.А., Фролов Б.А. Тритерпеноид милиацин снижает индуцированное стрессом ПОЛ // Бюллетень экспериментальной биологии и медицины, 2006. Т. 141, № 6. С. 633-635. [Panfilova T.V., Shtil A.A., Frolov B.A. Triterpenoid miliacin inhibits stress-induced lipid peroxidation. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 2006, Vol. 141, no. 6, pp. 633-635. (In Russ.)]
  6. Рождественский Л.М. Актуальные вопросы поиска и исследования противолучевых средств // Радиационная биология. Радиоэкология, 2013. Т. 53, № 5. С. 513-520. [Rozhdestvensky L.M. Topical issues of the search and research of anti-radiation agents. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. Radioecology, 2013, Vol. 53, no. 5, pp. 513-520. (In Russ.)]
  7. Рождественский Л.М. Классификация противолучевых средств в аспекте их фармакологического сигнала и сопряженности со стадией развития лучевого поражения // Радиационная биология. Радиоэкология, 2017. Т. 57, № 2. С. 117-135. [Rozhdestvensky L.M. Classification of radiation countermeasures in the aspect of their pharmacological effects and association with radiation injury progressing. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. Radioecology, 2017, Vol. 57, no. 2, pp. 117-135. (In Russ.)]
  8. Сарычева Ю.А., Токарева А.А., Штиль А.А., Колыванова М.А., Морозов В.Н., Панфилова Т.В., Фролов Б.А. Оценка антимутагенного эффекта тритерпеноида милиацина у мышей при воздействии ионизирующего излучения // Российский иммунологический журнал, 2020. № 9. С. 81-82. [Sarycheva Yu.A., Tokareva A.A., Shtil A.A., Kolyvanova M.A., Morozov V.N., Panfilova T.V., Frolov B.A. Evaluation of triterpenoid miliacin-related antimutagenic effect in mice exposed to ionizing radiation. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2020, no. 9, pp. 81-82. (In Russ.)]
  9. Семенов В.В., Студенцова И.А. Количественные и качественные критерии оценки эффективности антимутагенов в эксперименте // Вестник РАМН, 1993. № 3. С. 16-20. [Semenov V.V., Studentsova I.A. Quantitative and qualitative criteria for evaluating the efficiency of antimutagens in the experiment. Vestnik RAMN = Annals of the Russian Academy of Medical Sciences 1993, no. 3, pp. 16-20. (In Russ.)]
  10. Симбирцев А.С., Кетлинский С.А. Перспективы использования цитокинов и индукторов синтеза цитокинов в качестве радиозащитных препаратов // Радиационная биология. Радиоэкология, 2019. Т. 59, № 2. С. 170-176. [Simbirtsev A.S., Ketlinsky S.A. Perspectives for cytokines synthesis inducers as radioprotectors. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. Radioecology, 2019, Vol. 59, no. 2, pp. 170-176. (In Russ.)]
  11. Сычева Л.П., Лисина Н.И., Щеголева Р.А., Рождественский Л.М. Антимутагенное действие противолучевых препаратов в эксперименте на мышах // Радиационная биология. Радиоэкология, 2019. Т. 59, № 4. С. 388-393. [Sycheva L.P., Lisina N.I., Shchegoleva R.A., Rozhdestvensky L.M. Antimutagenic effect of anti-radiation drugs in an experiment on mice. Radiatsionnaya biologiya. Radioekologiya = Radiation Biology. Radioecology, 2019, Vol. 59, no. 4, pp. 388-393. (In Russ.)]
  12. Фролов Б.А., Кириллова А.В. Милиацин как мембранопротектор. Защитное действие милиацина при детергент-индуцированной иммуносупрессии // Российский аллергологический журнал, 2011. Т. 4, № 1. С. 402-403. [Frolov B.A., Kirillova A.V. Miliacin as a membrane protector. The protective effect of miliacin action under detergent-induced immunosuppression. Rossiyskiy allergologicheskiy zhurnal = Russian Journal of Allergy, 2011, Vol. 4, no. 1, pp. 402-403. (In Russ.)]
  13. Goldman D.C., Alexeev V., Lash E., Guha C., Rodeck U., Fleming W.H. The triterpenoid RTA408 is a robust mitigator of hematopoetic acute radiation syndrome in mice. Radiat. Res., 2015, Vol. 183, no. 3, pp. 338-344.
  14. Kim J.-H., Thimmulappa R.K., Kumar V., Cui W., Kumar S., Kombairaju P., Zhang H., Margolick J., Matsui W., Macvittie T., Malhotra S., Biswal S. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J. Clin. Invest., 2014, Vol. 124, no. 2, pp. 730-741.
  15. Satyamitra M., Ney P., Graves J., Mullaney C., Srinivasan V. Mechanism of radioprotection by σ-tocotrienol: pharmacokinetics, pharmacodynamics and modulation of signaling pathways. Br. J. Radiol., 2012, Vol. 85, pp. 1093-1103.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Sarycheva Y.A., Tokareva A.A., Shechtman A.G., Panfilova T.V., Pimenova Y.S., Mitrofanov R.A., Frolov B.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies