In vitro evaluation of immunomodulatory activity of Bifidobacterium bifidum 791 in the cell model of innate and adaptive immunity

Cover Page

Cite item

Full Text

Abstract

Over recent decades, multiple data were accumulated on immunotropic activity of Bifidum flora, based on effects of these bacteria on isolated lymphoid follicles, dendritic cells, B-cell aggregates, pro- and anti-inflammatory cytokines and chemokines, as well as participation of bifidoflora in the recognition of “non-self” during the development of microsymbiocenosis. The relevance of research in the field is associated both with fundamental issues of human host/microbiota symbiosis, but also with the prospects of practical application of the knowledge gained towards design of probiotics that affect the immune system. This article presents the results concerning effects of supernatant and bacterial cells of Bifidobacterium bifidum 791 (B. bifidum 791) strain in the model of human peripheral blood mononuclear cells (MNCs). We used the reference strain B. bifidum 791 (Russian Collection of Industrial Microorganisms from the GosNII Genetika Federal State Enterprise, Deposition No. AS-1247), which is used in production of the probiotic drug “Bifidumbacterin” (CJSC Ecopolis, Kovrov). Mononuclear cells (MNCs) were isolated from peripheral blood of 20 healthy donors. MNCs were stained with monoclonal antibodies for CD4, CD8, CD3, CD25, CD69, CD56 (Beckman Coulter, USA). Analysis of the cellular subsets was performed by multicolor flow cytometry with Cytomics FC500 instrument (Beckman Coulter, USA). The experiments were carried out in duplicate. The studies have shown that probiotic strains have an activating and modulating effect upon immunocompetent cells. The studied B. bifidum 791 strain had an immunomodulatory effect on the cells of nonspecific and adaptive immunity: it increased the percentage of CD69+ cells in the subpopulation of CD3+CD8+T lymphocytes, CD69 (%) and CD25 (%) NK cells, and promoted activation of cytotoxic lymphocytes. The supernatant of bifidobacteria had a more pronounced effect on MNCs. E.g., it increased the expression of CD69 by Th cells, induced the expression of CD25 by T cytotoxic cells, and increased the CD69 and CD25 expression (%) by NK cells compared to B. bifidum 791 bacterial cells. These data contribute to understanding the mechanisms of immunoregulatory influence of normobiota (in the Bifidobacteria models) by formation of symbiotic interactions “microbiota – host” and contribute to the development of a new research area, i.e., “infectious symbiology”. Further study of immunomodulatory activity of bifidoflora has the prospectives of searching and selection of Bifidobacteria strains, in order to create new targeted probiotic preparations.

About the authors

Elena G. Kostolomova

Tyumen State Medical University

Author for correspondence.
Email: lenakost@mail.ru
ORCID iD: 0000-0002-0237-5522

PhD (Biology), Associate Professor, Department of Microbiology

Russian Federation, 5/2, Kotovsky str., Tyumen, 625027

Tatyana Kh. Timokhina

Tyumen State Medical University

Email: tanklaeva52@mail.ru

PhD, MD (Biology), Associate Professor, Department of Microbiology

Russian Federation, Tyumen

Natalia B. Perunova

Tyumen State Medical University; Instutute of Cellular and Intracellular Symbiosis

Email: perunovanb@gmail.com
ORCID iD: 0000-0002-6352-8879
SPIN-code: 9625-1578
Scopus Author ID: 6603461107

PhD, MD (Medicine), Professor, Leading Research Associate, University Institute of Medical Biotechnologies and Biomedicine, Leading Research Associate, Laboratory of Infectious Symbiology

Russian Federation, Tyumen; Orenburg

Elizabeth D. Polyanskikh

Tyumen State Medical University

Email: polyanskih.li@mail.ru

Student

Russian Federation, Tyumen

Roman A. Sakharov

Tyumen State Medical University

Email: bigsalad@mail.ru

Student

Russian Federation, Tyumen

Anastasia V. Komarova

Tyumen State Medical University

Email: filosov.03@mail.ru

Student

Russian Federation, Tyumen

References

  1. Бухарин О.В., Перунова Н.Б., Иванова Е.В. Бифидофлора при ассоциативном симбиозе человека. Екатеринбург: УрО РАН, 2014. 212 с. [Bukharin O.V., Perunova N.B., Ivanova E.V. Bifidoflora in human associative symbiosis]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2014. 212 p.
  2. Бухарин О.В., Стадников А.А., Перунова Н.Б. Роль окситоцина и микробиоты в регуляции взаимодействий про- и эукариот при инфекции. Екатеринбург: УрО РАН, 2018. 247 с. [Bukharin O.V., Stadnikov A.A., Perunova N.B. The role of oxytocin and microbiota in the regulation of pro- and eukaryotic interactions during infection]. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2018. 247 p.
  3. Погожева А.В., Шевелева С.А., Маркова Ю.М. Роль пробиотиков в питании здорового и больного человека // Лечащий врач, 2017. № 5. С. 67-75. [Pogozheva A.V., Sheveleva S.A., Markova Yu.M. The role of probiotics in the nutrition of a healthy and sick person. Lechashchiy Vrach = Attending Physician, 2017, no. 5, pp. 67-75. (In Russ.)]
  4. Тимохина Т.Х., Марков А.А., Паромова Я.И., Самикова В.Н., Перунова Н.Б. Способ получения экзометаболитов бифидобактерий с высокой антимикробной активностью // Медицинская наука и образование Урала, 2016. № 2. C. 152-154. [Timokhina T.Kh., Markov A.A., Paromova Ya.I., Samikova V.N., Perunova N.B. Method for obtaining exometabolites of bifidobacteria with high antimicrobial activity. Meditsinskaya nauka i obrazovanie Urala = Medical Science and Education of the Urals, 2016, no. 2, pp. 152-154. (In Russ.)]
  5. de Vrese M., Winkler P., Rautenberg P., Harder T., Noah C., Laue C., Ott S., Hampe J., Schreiber S., Heller K., Schrezenmeir J. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: a double blind, randomized, controlled trial. Clin. Nutr., 2005, Vol. 24, no. 4, pp. 481-491.
  6. Esteban-Torres M., Ruiz L., Lugli G.A., Ventura M., Margolles A., Sinderen D. Editorial: role of bifidobacteria in human and animal health and biotechnological applications. Front. Microbiol., 2021, Vol. 12, 785664. doi: 10.3389/fmicb.2021.785664.
  7. Kekkonen R.A., Lummela N., Karjalainen H., Latvala S., Tynkkynen S., Jarvenpaa S., Kautiainen H., Julkunen I., Vapaatalo H., Korpela R. Probiotic intervention has strain-specifi c anti-inflammatory effects in healthy adults. World J. Gastroenterol., 2008, Vol. 14, no. 13, pp. 2029-2036.
  8. Kim J., Koo B.K., Knoblich J.A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol., 2020, Vol. 21, no. 10, pp. 571-584.
  9. Ruiz L., Delgado S., Ruas-Madiedo P., Sánchez B., Margolles A. Bifidobacteria and their molecular communication with the immune system. Front. Microbiol., 2017, Vol. 8, 2345. doi: 10.3389/fmicb.2017.02345.
  10. Shida K., Nanno M. Probiotics and immunology: separating the wheat from the chaff. Trends Immunol., 2008, Vol. 29, no. 11, pp. 565-573.
  11. Suvorov A. Gut microbiota, probiotics, and human health. Biosci. Microbiota Food Health, 2013, Vol. 32, no. 3, pp. 81-91.
  12. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res., 2020, Vol. 30, no. 6, pp. 492-506.

Copyright (c) 2022 Kostolomova E.G., Timokhina T.K., Perunova N.B., Polyanskikh E.D., Sakharov R.A., Komarova A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies