Impairment of natural killer populations in the patients recovered from COVID-19

Cover Page

Cite item

Full Text

Abstract

To date, only minimal attention has been paid to assessment of immunity state in patients with post-COVID syndrome. Influence of the SARS-CoV-2 virus on various systems in the body, including the immune system, may contribute to the development of disorders causing different diseases. At the same time, the patients suffering from the COVID-19 complications, including hospitalization and isolation from their family members, experience severe psychological and social stress. In almost every fourth case, these factors lead to development of the s.c. post-COVID syndrome. The aim of the present study was to evaluate the numbers of NK cells, levels of cortisol and characteristics of immune system disorders in the patients who underwent SARS-CoV-2 infection.

78 patients were examined 6 months after suffering COVID-19. We have assessed 25 parameters of the blood system (general blood test), 50 parameters of immune system, i.e., counts of T lymphocytes, B lymphocytes and their functional markers, NK, T-NK cell subsets, phagocytic components of immune system, as well as factors of humoral immunity, including total and specific immunoglobulins and complement fragments.

Our studies showed a sharp, three-fold decrease in the number of natural killers in more than 1/3 of the examined individuals. This decrease is accompanied by higher relative contents of T lymphocytes and T helper cells. The latter finding may be associated with a compensatory increase in T lymphocytes and dysregulation of the T cell link of immune system, thus requiring a more detailed study and, most likely, evaluation of the cytokine profile in such patients. Moreover, in some post-COVID patients, high levels of cortisol still persist, thus suggesting maintenance of chronic stress in these patients. Some changes in platelet counts are also important (increased levels of blood platelets and thrombocytocrit), which may promote later disorders of blood clotting system and development of thrombosis.

About the authors

Maria A. Dobrynina

Research Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: mzurochka@mail.ru
ORCID iD: 0000-0003-1852-9650

PhD (Medicine), Research Associate, Laboratory of Inflammation Immunology

Russian Federation, 106, Pervomayskaya str., Yekaterinburg, 620049

Aleksandr V. Zurochka

Research Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences; South Ural State University

Email: av_zurochka@mail.ru
ORCID iD: 0000-0003-4371-4161

PhD, MD (Medicine), Professor, Head, Laboratory of Immune Biotechnology, Leading Research Associate

Russian Federation, 106, Pervomayskaya str., Yekaterinburg, 620049; Chelyabinsk

M. V. Komelkova

Research Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences; South Ural State University

Email: mzurochka@mail.ru

PhD (Biology), Head, Laboratory of Systemic Pathology and Prospective Medical Drugs, Senior Research Associate, Laboratory of Immune Physiology and Immunopharmacology

Russian Federation, 106, Pervomayskaya str., Yekaterinburg, 620049; Chelyabinsk

Shanshan Luo

Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: mzurochka@mail.ru

Professor

Taiwan, Province of China, Wuhan

References

  1. Зурочка А.В., Хайдуков С.В., Кудрявцев И.В., Черешнев В.А. Проточная цитометрия в биомедицинских исследованиях. Екатеринбург: РИО УрО РАН, 2018. 720 с. [Zurochka A.V. Khaidukov S.V., Kudryavtsev I.V., Chereshnev V.A. Flow cytometry in biomedical research]. Ekaterinburg: RIO Ural Branch of the Russian Academy of Sciences, 2018. 720 p.
  2. Хайдуков С.В., Байдун Л.А., Зурочка А.В., Тотолян А.А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» // Российский иммунологический журнал, 2014. Т. 8 (17), № 4. С. 974-992. [Khaydukov S.V., Baidun L.A., Zurochka A.V., Totolyan A.A. Standardized technology “Study of the subpopulation composition of peripheral blood lymphocytes using flow cytofluorometer-analyzers”. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2014, Vol. 8 (17), no. 4, pp. 974-992. (In Russ.)]
  3. d’Alessandro M., Bergantini L., Cameli P., Curatola G., Remediani L., Sestini P., Bargagli E; Siena COVID Unit. Peripheral biomarkers’ panel for severe COVID-19 patients. J. Med. Virol., 2020, Vol. 93, no. 3, pp. 1230-1232.
  4. Dos Santos R.M. Isolation, social stress, low socioeconomic status and its relationship to immune response in Covid-19 pandemic context. Brain Behav. Immun. Health, 2020, Vol. 7, 100103. doi: 10.1016/j.bbih.2020.100103.
  5. Heffner K.L. Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol. Allergy Clin. North Am., 2011, Vol. 31, pp. 95-108.
  6. Jouan Y., Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. J. Exp. Med., 2020, Vol. 217, no. 12, e20200872. doi: 10.1084/jem.20200872.
  7. Masselli E., Vaccarezza M., Carubbi C., Pozzi G., Presta V., Mirandola P., Vitale M. NK cells: A double edge sword against SARS-CoV-2. Adv. Biol. Regul., 2020, Vol. 77, 100737. doi: 10.1016/j.jbior.2020.100737.
  8. Rendeiro A.F., Casano J., Vorkas C.K., Singh H., Morales A., DeSimone R.A., Ellsworth G.B., Soave R., Kapadia S.N., Saito K., Brown C.D., Hsu J., Kyriakides C., Chui S., Cappelli L., Cacciapuoti M.T., Tam W., Galluzzi L., Simonson P.D., Elemento O., Salvatore M., Inghirami G. Longitudinal immune profiling of mild and severe COVID-19 reveals innate and adaptive immune dysfunction and provides an early prediction tool for clinical progression. medRxiv [Preprint], 2020, Vol. 2020, 09.08.20189092. doi: 10.1101/2020.09.08.20189092.
  9. Steenblock C., Todorov V., Kanczkowski W., Eisenhofer G., Schedl A., Wong M.-L., Licinio J., Bauer M., Young A.H., Gainetdinov R.R., Bornstein S.R. Severe acute respiratory syndrome coronavirus 2 (SARS-cov-2) and the neuroendocrine stress axis. Mol. Psychiatry, 2020, Vol. 25, no. 8, pp. 1611-1617.
  10. Vasile C. Mental health and immunity. Exp. Ther. Med., 2020, Vol. 20, no. 6, 211. doi: 10.3892/etm.2020.9341.
  11. Wu Y., Huang X., Sun J., Xie T., Lei Y., Muhammad J., Li X., Zeng X., Zhou F., Qin H., Shao L., Zhang Q. Clinical characteristics and immune injury mechanisms in 71 Patients with COVID-19. mSphere, 2020, Vol. 5, no. 4, e00362-20. doi: 10.1128/mSphere.00362-20.
  12. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, Vol. 8, no. 4, pp. 420-422.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Dobrynina M.A., Zurochka A.V., Komelkova M.V., Luo S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies