Functional state of regulatory CD4+T cell pool in HIV/hepatitis C virus coinfected subjects

Cover Page

Cite item

Full Text

Abstract

Coinfection with HIV and hepatitis C virus (HCV) leads to development of systemic inflammation associated with increased risk for liver, kidney and cardiovascular diseases, as well as higher mortality from AIDS-associated and non-AIDS-associated illnesses. To a large extent, systemic inflammation is controlled by regulatory T lymphocytes, a subset of CD4+ T cells. While expressing various functional molecules, regulatory CD4+T cells limit functional activity of immunocytes and prevent the development of excessive inflammatory reactions and autoimmune diseases. At the same time, there are no available data in literature concerning the sizes of certain functionally active regulatory CD4+T cell subsets in HIV/HCV coinfected patients. Our aim was to estimate the size of functional pool of the regulatory CD4+T lymphocytes in HIV/ HCV coinfected patients receiving antiretroviral therapy.

Two groups of HIV-positive patients were examined: 1) HIV/HCV coinfected subjects (n = 21); 2) HIV mono-infected patients (n = 22). The control group included voluntary blood donors without HIV and HCV infections (n = 23). Regulatory CD4+T lymphocytes were identified by multicolor flow cytometry based on the expression of the following markers: CD3, CD4, CD25, CD127, and FoxP3. Functional subsets of regulatory CD4+T cells were discerned by the expression of CD39, GARP, LAP, and CD71 molecules. Relative and absolute counts of suppressor CD4+T lymphocytes were calculated for each subset. TGF-β1 concentrations in blood plasma were determined with ELISA technique.

Absolute counts of regulatory CD4+T lymphocytes in peripheral blood of HIV/HCV coinfected patients proved to be twice lower than in healthy subjects, while being not accompanied by a decrease in relative frequency of these cells. Despite their deficiency, the number of functionally active CD39-positive,

GARP/LAP-positive, and CD71-positive suppressor cells in HIV/HCV coinfected persons remained at the level found in HIV-monoinfected and healthy people. The frequency of functionally active regulatory CD4+T lymphocytes was increased in HIV/HCV coinfected patients compared with HIV-monoinfected (CD39+, GARP+LAP+) and healthy (CD39+, GARP+LAP+, CD71+) subjects.

In HIV/HCV coinfected patients receiving antiretroviral therapy, the pool of regulatory CD4+T lymphocytes is rich in cells possessing high suppressive capacity. However, the absolute number of functionally active regulatory CD4+T cells remain at the level corresponding to healthy individuals, thus, apparently, is not sufficient to control the systemic inflammation developing in HIV/HCV coinfection.

About the authors

Evgeniya V. Saidakova

Institute of Ecology and Genetic of Microorganisms, Affiliation of Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: radimira@list.ru
ORCID iD: 0000-0002-4342-5362

PhD, MD (Biology), Head, Lavoratory of Molecular Immunology

Russian Federation, 614081, Perm, Goleva str., 3

L. B. Korolevskaya

Institute of Ecology and Genetic of Microorganisms, Affiliation of Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: radimira@list.ru
ORCID iD: 0000-0001-9840-7578

PhD (Medicine), Research Associate, Laboratory of Environmental Immunology

Russian Federation, 614081, Perm, Goleva str., 3

K. V. Shmagel

Institute of Ecology and Genetic of Microorganisms, Affiliation of Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: radimira@list.ru
ORCID iD: 0000-0001-6355-6178

PhD, MD (Medicine), Head, Laboratory of Environmental Immunology

Russian Federation, 614081, Perm, Goleva str., 3

References

  1. Стрыгин А.В., Кнышова Л.П., Доценко А.М. Оценка распространенности ВИЧ-ассоциированных заболеваний на территории Волгоградской области в 2012-2016 годах // Медицинский алфавит, 2017. Т. 4, № 38. С. 48-49. [Strygin A.V., Knyshova L.P., Docenko A.M. Prevalence of HIV-associated diseases in Volgograd region during years 2012-2016. Meditsinskiy alfavit = Medical Alphabet, 2017, Vol. 4, no. 38, pp. 48-49. (In Russ.)]
  2. Затолока П.А. Распространенность сопутствующей патологии у ВИЧ-инфицированных лиц // Медицинский журнал, 2017. Т. 3, № 61. С. 95-100. [Zatoloka P.A. Prevalence of concomitant pathology in HIV-infected individuals. Meditsinskiy zhurnal = Medical Journal, 2017, Vol. 3, no. 61, pp. 95-100. (In Russ.)]
  3. Akbar A.N., Vukmanovic-Stejic M., Taams L.S., Macallan D.C. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat. Rev. Immunol., 2007, Vol. 7, no. 3, pp. 231-237.
  4. Andersson J., Tran D.Q., Pesu M., Davidson T.S., Ramsey H., O’Shea J.J., Shevach E.M. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J. Exp. Med., 2008, Vol. 205, no. 9, pp. 1975-1981.
  5. Angin M., Kwon D.S., Streeck H., Wen F., King M., Rezai A., Law K., Hongo T.C., Pyo A., Piechocka-Trocha A., Toth I., Pereyra F., Ghebremichael M., Rodig S.J., Milner Jr D.A., Richter J.M., Altfeld M., Kaufmann D.E., Walker B.D., Addo M.M. Preserved function of regulatory T cells in chronic HIV-1 infection despite decreased numbers in blood and tissue. J. Infect. Dis., 2012, Vol. 205, no. 10, pp. 1495-1500.
  6. Burnstock G., Boeynaems J.M. Purinergic signalling and immune cells. Purinergic Signal, 2014, Vol. 10, no. 4, pp. 529-564.
  7. Chen T.Y., Ding E.L., Seage I., Kim A.Y. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression. Clin. Infect. Dis., 2009, Vol. 49, no. 10, pp. 1605-1615.
  8. de Oca Arjona M.M., Marquez M., Soto M.J., Rodriguez-Ramos C., Terron A., Vergara A., Arizcorreta A., Fernandez-Gutierrez C., Giron-González J.A. Bacterial translocation in HIV-infected patients with HCV cirrhosis: implication in hemodynamic alterations and mortality. J. Acquir. Immune. Defic. Syndr., 2011, Vol. 56, no. 5, pp. 420-427.
  9. Deaglio S., Robson S.C. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv. Pharmacol., 2011, Vol. 61, pp. 301-332.
  10. Gavin M.A., Clarke S.R., Negrou E., Gallegos A., Rudensky A. Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat. Immunol., 2002, Vol. 3, no. 1, pp. 33-41.
  11. Gibson D.J., Elliott L., McDermott E., Tosetto M., Keegan D., Byrne K., Martin S.T., Rispens T., Cullen G., Mulcahy H.E., Cheifetz A.S., Moss A.C., Robson S.C., Doherty G.A., Ryan E.J. Heightened expression of CD39 by regulatory T lymphocytes is associated with therapeutic remission in inflammatory bowel disease. Inflamm. Bowel Dis., 2015, Vol. 21, no. 12, pp. 2806-2814.
  12. Gondek D.C., Lu L.F., Quezada S.A., Sakaguchi S., Noelle R.J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol., 2005, Vol. 174, no. 4. pp. 1783-1786.
  13. Hamed F.N., Astrand A., Bertolini M., Rossi A., Maleki-Dizaji A., Messenger A.G., McDonagh A.J.G., Tazi-Ahnini R. Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCRbeta-chain, which highlights the immunopathological aspect of the disease. PLoS One, 2019, Vol. 14, no. 7, e0210308. doi: 10.1371/journal.pone.0210308.
  14. Kim J.M., Rasmussen J.P., Rudensky A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol., 2007, Vol. 8, no. 2, pp. 191-197.
  15. Langhans B., Kramer B., Louis M., Nischalke H.D., Hüneburg R., Staratschek-Jox A., Odenthal M., Manekeller S., Schepke M., Kalff J., Fischer H.P., Schultze J.L., Spengler U. Intrahepatic IL-8 producing Foxp3(+)CD4(+) regulatory T cells and fibrogenesis in chronic hepatitis C. J. Hepatol., 2013, Vol. 59, no. 2, pp. 229-235.
  16. Liu W., Putnam A.L., Xu-Yu Z., Szot G.L., Lee M.R., Zhu S., Gottlieb P.A., Kapranov P., Gingeras T.R., Fazekas de St Groth B., Clayberger C., Soper D.M., Ziegler S.F., Bluestone J.A. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med., 2006, Vol. 203, no. 7, pp. 1701-1711.
  17. Lopez-Abente J., Correa-Rocha R., Pion M. Functional mechanisms of treg in the context of HIV infection and the janus face of immune suppression. Front. Immunol., 2016, Vol. 7, 192. doi: 10.3389/fimmu.2016.00192.
  18. McHugh R.S., Shevach E.M. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol., 2002, Vol. 168, no. 12, pp. 5979-5983.
  19. Moreno-Fernandez M.E., Zapata W., Blackard J.T., Franchini G., Chougnet C.A. Human regulatory T cells are targets for human immunodeficiency Virus (HIV) infection, and their susceptibility differs depending on the HIV type 1 strain. J. Virol., 2009, Vol. 83, no. 24, pp. 12925-12933.
  20. Nakamura K., Kitani A., Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med., 2001, Vol. 194, no. 5, pp. 629-644.
  21. Noyan F., Lee Y.S., Zimmermann K., Hardtke-Wolenski M., Taubert R., Warnecke G., Knoefel A.K., Schulde E., Olek S., Manns M.P., Jaeckel E. Isolation of human antigen-specific regulatory T cells with high suppressive function. Eur. J. Immunol., 2014, Vol. 44, no. 9, pp. 2592-2602.
  22. Qureshi O.S., Zheng Y., Nakamura K., Attridge K., Manzotti C., Schmidt E.M., Baker J., Jeffery L.E., Kaur S., Briggs Z., Hou T.Z., Futter C.E., Anderson G., Walker L.S.K., Sansom D.M. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science, 2011, Vol. 332, no. 6029, pp. 600-603.
  23. Ring S., Oliver S.J., Cronstein B.N., Enk A.H., Mahnke K. CD4+CD25+ regulatory T cells suppress contact hypersensitivity reactions through a CD39, adenosine-dependent mechanism. J. Allergy Clin. Immunol., 2009, Vol. 123, no. 6, pp. 1287-1296.
  24. Santin M., Mestre M., Shaw E., Barbera M.J., Casanova A., Niubo J., Bolao F., Podzamczer D., Gudiol F. Impact of hepatitis C virus coinfection on immune restoration during successful antiretroviral therapy in chronic human immunodeficiency virus type 1 disease. Eur. J. Clin. Microbiol. Infect. Dis., 2008, Vol. 27, no. 1, pp. 65-73.
  25. Shmagel K.V., Saidakova E.V., Shmagel N.G., Korolevskaya L.B., Chereshnev V.A., Robinson J., Grivel J.C., Douek D.C., Margolis L., Anthony D.D., Lederman M.M. Systemic inflammation and liver damage in HIV/hepatitis C virus coinfection. HIV Medicine, 2016, Vol. 17, no. 8, pp. 581-589.
  26. Simonetta F., Lecuroux C., Girault I., Goujard C., Sinet M., Lambotte O., Venet A., Bourgeois C. Early and long-lasting alteration of effector CD45RA(-)Foxp3(high) regulatory T-cell homeostasis during HIV infection. J. Infect. Dis., 2012, Vol. 205, no. 10, pp. 1510-1519.
  27. Stockis J., Colau D., Coulie P.G., Lucas S. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur. J. Immunol., 2009, Vol. 39, no. 12, pp. 3315-3322.
  28. Wang H., Song H., Pham A.V., Cooper L.J., Schulze J.J., Olek S., Tran D.Q. Human LAP(+)GARP(+)FOXP3(+) regulatory T cells attenuate xenogeneic graft versus host disease. Theranostics, 2019, Vol. 9, no. 8, pp. 2315-2324.
  29. Younes S.A., Talla A., Pereira Ribeiro S., Saidakova E.V., Korolevskaya L.B., Shmagel K.V., Shive C.L., Freeman M.L., Panigrahi S., Zweig S., Balderas R., Margolis L., Douek D.C., Anthony D.D., Pandiyan P., Cameron M., Sieg S.F., Calabrese L.H., Rodriguez B., Lederman M.M. Cycling CD4+ T cells in HIV-infected immune nonresponders have mitochondrial dysfunction. J. Clin. Invest., 2018, Vol. 128, no. 11, pp. 5083-5094.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Frequency of CD39-positive regulatory T lymphocytes in HIV/HCV coinfected and HIV monoinfected patients

Download (105KB)
3. Figure 2. Frequency of GARP/LAP-positive regulatory T cells and concentrations of TGF-β1 in the peripheral blood of HIV/HCV coinfected and HIV monoinfected patients

Download (165KB)

Copyright (c) 2022 Saidakova E.V., Korolevskaya L.B., Shmagel K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».