INFLUENCE OF MURAMYL DIPEPTIDE DERIVATE (GMDP-A) ON NOD-2 EXPRESSED TUMOUR CELL LINES

Cover Page
  • Authors: Gaponov A.M.1,2, Yakushenko E.V.1, Tutelyan A.V.3, Kozlov I.G.1
  • Affiliations:
    1. D. Rogachev National Medical Research Center for Pediatrics Hematology, Oncology and Immunology
    2. Federal Scientific and Clinical Center for Reanimatology and Rehabilitation
    3. Federal Budget Institution of Science “Central Research Institute of Epidemiology” of The Federal Service on Customers' Rights Protection and Human Well-being Surveillance
  • Issue: Vol 21, No 2 (2018)
  • Pages: 128-140
  • Section: ORIGINAL ARTICLES
  • URL: https://journals.rcsi.science/1028-7221/article/view/119342
  • ID: 119342

Cite item

Full Text

Abstract

Muramyl dipeptides (MDP) are the multiple repeating structural unit of a cell wall peptidoglycan of all the bacteria, which possess the ability to interact with cytoplasmic receptors of the NOD family in human cells and induce activation of the innate immunity. This makes them the promising compounds for the development of drugs for immunomodulating therapy and in particular for biotherapy of tumors. However, there exists data on the expression of MDP targeting NOD receptors in tumor cells and association of some types of cancer with different polymorphic variants of these receptors. In this connection, the purpose of the reported study was to investigate the effect of MDP synthetic analogue, i. e. GMDP-A on the proliferative capacity of NOD2-expressing tumor cell lines of various origin, and the effect of the combined use of GMDP-A with cisplatina. As a result of the performed studies, it has been demonstrated that GMDP-A (at the doses of 1, 5, 10, 20 and 40 μg/ml) itself and GMDP-A in combination with cisplatina exerted differently directed effects.

About the authors

A. M. Gaponov

D. Rogachev National Medical Research Center for Pediatrics Hematology, Oncology and Immunology; Federal Scientific and Clinical Center for Reanimatology and Rehabilitation

Email: fake@neicon.ru

PhD, Head of the Laboratory of Infection Immunology; Leading Researcher, Laboratory of Molecular Mechanisms of Critical States

Moscow

Russian Federation

E. V. Yakushenko

D. Rogachev National Medical Research Center for Pediatrics Hematology, Oncology and Immunology

Email: fake@neicon.ru

DrSci, Leading Researcher, Experimental and Clinical Pharmacology Department

Moscow

Russian Federation

A. V. Tutelyan

Federal Budget Institution of Science “Central Research Institute of Epidemiology” of The Federal Service on Customers' Rights Protection and Human Well-being Surveillance

Email: fake@neicon.ru
ORCID iD: 0000-0002-2706-6689

DrSci, Professor, Corresponding member of the Russian Academy of Sciences, Head of Laboratory Associated Infections Health Care

eLibrary SPIN: 8150–2230

Moscow Russian Federation

I. G. Kozlov

D. Rogachev National Medical Research Center for Pediatrics Hematology, Oncology and Immunology

Author for correspondence.
Email: immunopharmacology@yandex.ru

DrSci, professor, Chief of Experimental and Clinical Pharmacology Department

117997 Moscow, Samory Mashela str. 1

Russian Federation

References

  1. Corthay A. Does the immune system naturally protect against cancer? Front Immunol. 2014, 5, 197.
  2. Симбирцев А.С. Роль цитокинов в развитии опухолей и в иммунотерапии рака. В кн.: Цитокины в патогенезе и лечении заболеваний человека. Фолиант, СПб 2018, 479–509. [Simbirsev A.S. The role of cytokines in the development of tumors and in cancer immunotherapy. In: Cytokines in the pathogenesis and treatment of human diseases. Folio, St. Petersburg 2018, 479–509].
  3. Girardin S.E., Travassos L.H., Hervé M., Blanot D., Boneca I.G., Philpott D.J., Sansonetti P.J., Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by Nod1 and NOD-2. J Biol Chem. 2003, 278(43), 41702–8.
  4. Traub S., von Aulock S., Hartung T., Hermann C. MDP and other muropeptides-direct and synergistic effects on the immune system. J Endotoxin Res. 2006, 12 (2), 69–85.
  5. Ростовцева Л.И., Андронова Т.М., Малькова В.П. Синтез и противоопу холевое действие гликопептидов, содержащих N-ацетилглюкозаминил-(β1-4)-N-ацетилмурамил-дисахаридное звено. Биоорганическая химия 1981, 7, 12, 1843–1858. [Rostovtseva LI, Andronova TM, Malkova V.P. Synthesis and antitumor activity of glycopeptides containing N-acetylglucosaminyl (β1– 4)-N-acetylmuramyl-disaccharide unit. Bioorganic Chemistry 1981, 7, 12, 1843–1858].
  6. Сорокина И.Б., Малькова В.П., Ростовцева Л.И. Поиск противоопухолевых соединений среди природных и синтетических гликопептидов, моделирующих клеточные стенки бактерий. В кн.: Актуальные проблемы экспериментальной химиотерапии опухолей. II Всесоюзное совещание. М., 1982; 147–9. [Sorokina I.B., Malkova V.P., Rostovtseva L.I. Search for antitumor compounds among natural and synthetic glycopeptides, which model cell walls of bacteria. In the book: Actual problems of experimental chemotherapy of tumors. Second All-Union Conference. M., 1982; 147–9].
  7. Shimizu Т., Iwamoto Y., Yanagihara Y., Ikeda K., Achiwa K. Combined effects of synthetic lipid A analogs or bacterial lypopolysaccharide with glucosaminylmuramyldipeptide on antitumor activity against meth A fibrosarcoma in mice. Int J Immunopharmacol. 1992, 14(8), 1415–20.
  8. Симонова М.А. Влияние ГМДП на биологическую активность цисплатина и фактора некроза опухолей-альфа. Автореф. дисс. Москва 2008. [Simonova M.A. The influence of GMDP on the biological activity of cisplatin and tumor necrosis factor-alpha. Author's abstract. diss. Moscow 2008].
  9. Ахматова Н.К. Молекулярные и клеточные механизмы действия иммуномодуляторов микробного происхождения на функциональную активность эффекторов врожденного иммунитета. Автореф. дисс. Москва 2006. [Akhmatova N.K. Molecular and cellular mechanisms of action of immunomodulators of microbial origin on the functional activity of the effectors of innate immunity. Author's abstract. diss. Moscow 2006].
  10. Ахматова Н.К., Кислевский М.В. В кн.: Врожденный иммунитет: противоопухолевый и противоинфекционный. Практическая медицина, Москва 2008. [Akhmatova N.K., Kislevsky M.V. In the book: Congenital immunity: antitumor and antiinfective. Practical medicine, Moscow 2008].
  11. Уманский В.Ю., Стефанов А.В., Бондарь О.П. Эффект ГМДП, заключенного в липосомы, на метастазирование карциномы легкого Льюис. Экспериментальная онкология 1988, Т. 10, № 5, 40–3. [Umansky V. Yu., Stefanov A.V., Bondar O.P. The effect of GMDP, encapsulated in liposomes, on the metastasis of Lewis lung carcinoma. Experimental oncology 1988, T. 10, No. 5, 40–3].
  12. Ревазова Е.С. Мурамилдипептиды модулируют экспрессию опухолеассоциированных антигенов. Иммунология 1989, Т. 4, 32– 6. [Revazova E.S. Muramyl dipeptides modulate the expression of tumor-associated antigens. Immunology 1989, Vol. 4, 32–6].
  13. Valyakina Т.I., Malakhov A., Malakhova N., Petrova E., Bykovskaya S., Revazova E., Nesmeyanov V. Glucosaminylmuramyldipeptide induced changes in phenotype of melanoma cells result in their increased lysis by peripheral blood cells. Int J Oncol. 1996, 9, 885–91.
  14. Petrova E.E., Simonova M.A., Komaleva R.L., Britsina M.V., Andronova T.M., Nesmeyanov V.A., Valyakina T.I. GMDP augments antitumor action of the CP/TNFalpha combination in vivo. Biomed Pharmacother. 2010, 64 (4), 240–8.
  15. Werts C., Rubino S., Ling A., Girardin S.E., Philpott D.J.J. Nod-like receptors in intestinal homeostasis, inflammation, and cancer. Leukoc Biol. 2011, 90 (3), 471–82.
  16. Velloso F.J., Sogayar M.C., Correa R.G. Expression and in vitro assessment of tumorigenicity for NOD1 and NOD-2 receptors in breast cancer cell lines. BMC Res Notes. 2018, 3, 11(1), 222.
  17. Papaconstantinou I., Theodoropoulos G., Gazouli M., Panoussopoulos D., Mantzaris G.J., Felekouras E., Bramis J. Association between mutations in the CARD15/NOD-2 gene and colorectal cancer in a Greek population. Int J Cancer. 2005, 10, 114(3), 433–5.
  18. Dzierzbicka K., Trzonkowski P., Sewerynek P., Kolodziejczyk A.M., Myśliwski A. Synthesis and biological activity of tuftsin, its analogue and conjugates containing muramyl dipeptides or normuramyl dipeptides. J Pept Sci. 2005, 11(3), 123–35.
  19. Klimp A.H., de Vries E.G., Scherphof G.L., Daemen T. A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol. 2002, 44(2), 143–61.
  20. Ekman A.K., Cardell L.O. The expression and function of Nod-like receptors in neutrophils. Immunology 2010, 130(1), 55–63.
  21. van der Meer J.H., Netea M.G., Dinarello C.A. Modulation of muramyl dipeptide stimulation of cytokine production by blood components. Clin Exp Immunol. 2009, 156(3), 428–33.
  22. Barnich N., Aguirre J.E., Reinecker H.C., Xavier R., Podolsky D.K. Membrane recruitment of NOD-2 in intestinal epithelial cells is essential for nuclear factor{kappa}B activation in muramyl dipeptide recognition. J Cell Biol. 2005, 4; 170(1), 21–6.
  23. Ogura Y., Lala S., Xin W., Smith E., Dowds T.A., Chen F.F., Zimmermann E., Tretiakova M., Cho J.H., Hart J., Greenson J.K., Keshav S., Nuñez G. Expression of NOD-2 in Paneth cells: a possible link to Crohn’s ileitis. Gut. 2003, 52(11), 1591–7.
  24. Lubiński J., Huzarski T., Kurzawski G., Suchy J., Masojć B., Mierzejewski M., Lener M., Domagała W., Chosia M., Teodorczyk U., Medrek K., Debniak T., Złowocka E., Gronwald J., Byrski T., Grabowska E., Nej K., Szymańska A., Szymańska J., Matyjasik J., Cybulski C., Jakubowska A., Górski B., Narod S.A. The 3020insC Allele of NOD-2 Predisposes to Cancers of Multiple Organs. Hered Cancer Clin Pract. 2005, 15, 3(2), 59–63.
  25. Cruickshank S.M., Wakenshaw L., Cardone J., Howdle P.D., Murray P.J., Carding S.R. Evidence for the involvement of NOD-2 in regulating colonic epithelial cell growth and survival. World J Gastroenterol. 2008, 14, 14(38), 5834–41.
  26. Ogura Y., Bonen D.K., Inohara N., Nicolae D.L., Chen F.F., Ramos R., Britton H., Moran T., Karaliuskas R., Duerr R.H., Achkar J.P., Brant S.R., Bayless T.M., Kirschner B.S., Hanauer S.B., Nuñez G., Cho J.H. A frameshift mutation in NOD-2 associated with susceptibility to Crohn’s disease. Nature 2001, 31; 411 (6837), 603–6.
  27. Ogura Y., Inohara N., Benito A., Chen F.F., Yamaoka S., Nunez G. NOD-2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem. 2001, 16, 276(7), 4812–8.
  28. Hugot J.P., Chamaillard M., Zouali H., Lesage S., Cézard J.P., Belaiche J., Almer S., Tysk C., O’Morain C.A., Gassull M., Binder V., Finkel Y., Cortot A., Modigliani R., Laurent-Puig P., Gower-Rousseau C., Macry J., Colombel J.F., Sahbatou M., Thomas G. Association of NOD-2 leucine-rich repeat variants with susceptibility to Crohn’s disease.Nature. 2001, 31; 411(6837), 599–603.
  29. Hampe J., Cuthbert A., Croucher P.J., Mirza M.M., Mascheretti S., Fisher S., Frenzel H., King K., Hasselmeyer A., MacPherson A.J., Bridger S., van Deventer S., Forbes A., Nikolaus S., Lennard-Jones J.E., Foelsch U.R., Krawczak M., Lewis C., Schreiber S., Mathew C.G. Association between insertion mutation in NOD-2 gene and Crohn’s disease in German and British populations. Lancet 2001, 16, 357(9272), 1925–8.
  30. Companioni O., Bonet C., Muñoz X., Weiderpass E., Panico S., Tumino R., Palli D., Agnoli C., Vineis P., Boutron-Ruault M.C., Racine A., Clavel-Chapelon F., Travis R.C., Khaw K.T., Riboli E., Murphy N., Vergnaud A.C., Trichopoulou A., Benetou V., Trichopoulos D., Lund E., Johansen D., Lindkvist B., Johansson M., Sund M., Ardanaz E., Sánchez-Cantalejo E., Huerta J.M., Dorronsoro M., Ramón Quirós J., Tjonneland A., Mortensen L.M., Overvad K., Chang-Claude J., Rizzato C., Boeing H., Bueno-de-Mesquita H.B., Siersema P., Peeters P.H., Numans M.E., Carneiro F., Licaj I., Freisling H., Sala N., González C.A. Polymorphisms of Helicobacter pylori signaling pathway genes and gastric cancer risk in the European Prospective Investigation into Cancer-Eurgast cohort. Int J Cancer. 2014, 1, 134(1), 92–101.
  31. Rosenstiel P., Hellmig S., Hampe J., Ott S., Till A., Fischbach W., Sahly H., Lucius R., Fölsch U.R., Philpott D., Schreiber S. Influence of polymorphisms in the NOD1/CARD4 and NOD-2/CARD15 genes on the clinical outcome of Helicobacter pylori infection. Cell Microbiol. 2006, 8(7), 1188–98.
  32. Philpott D.J., Sorbara M., Robertson S.J., Croitoru K., Girardin S.E. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014, 14(1), 9–23.
  33. Penack O., Holler E., van den Brink M.R. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood 2010, 11, 115(10), 1865–72.
  34. Bonen D.K., Ogura Y., Nicolae D.L., Inohara N., Saab L., Tanabe T., Chen F.F., Foster S.J., Duerr R.H., Brant S.R., Cho J.H., Nuñez G. Crohn’s disease-associated NOD-2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 2003, 124(1), 140–6.
  35. Немцова Е.Р., Безбородова О.А., Морозова Н.Б., Воронцова М.С., Венедиктова Ю.Б., Андреева Т.Н., Нестерова Е.И., Андронова Т.М., Якубовская Р.И. Эффективность сочетанного лечения экспериментальных опухолей цитостатическими препаратами и ГМДП-А. Российский биотерапевтический журнал 2017, 16, 2, 13–22. [Nemtsova E.R., Bezborodova O.A., Morozova N.B., Vorontsova M.S., Venediktova Yu.B., Andreeva T.N., Nesterova E.I., Andronova T.M., Yakubovskaya R.I. Efficiency of combined treatment of experimental tumors with cytostatic drugs and GMDP-A. Russian Biotherapeutic Journal 2017, 16, 2, 13–22].
  36. Wen X., Zheng P., Ma Y., Ou Y., Huang W., Li S., Liu S., Zhang X., Wang Z., Zhang Q., Cheng W., Lin R., Li H., Cai Y., Hu C., Wu N., Wan L., Pan T., Rao J., Bei X., Wu W., Jin J., Yan J., Liu G. Salutaxel, a conjugate of docetaxel and a muramyl dipeptide (MDP) analogue, acts as multifunctional prodrug that inhibits tumor growth and metastasis. J Med Chem. 2018, 22, 61(4), 1519–1540.
  37. Trescec A., Iskrić S., Ljevaković D., Hrsak I., Tomasić J. The effects of immunomodulating peptidoglycan monomer and muramyl dipeptide on hepatic microsomal UDP-glucuronyltransferase and beta-glucuronidase. Int J Immunopharmacol. 1987, 9(3), 371–8.
  38. Montero A.J., Diaz-Montero C.M., Kyriakopoulos C.E., Bronte V., Mandruzzato S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother. 2012, 35 (2), 107–15.
  39. Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009, 9(3), 162–74.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Gaponov A.M., Yakushenko E.V., Tutelyan A.V., Kozlov I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».