Finite-Dimensional Approximations of the Steklov–Poincaré Operator in Periodic Elastic Waveguides


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For anisotropic elastic waveguides with cylindrical or periodic outlets to infinity, artificial integro-differential conditions are developed at the end face of a truncated waveguide, which simulate the Steklov–Poincaré operator for scalar problems. Asymptotically sharp error estimates are derived in the definition of both the elastic fields themselves in the waveguide and the corresponding scattering coefficients.

Об авторах

S. Nazarov

Faculty of Mathematics and Mechanics, St. Petersburg State University; Peter the Great St. Petersburg State Polytechnic University; Institute for Problems in Mechanical Engineering, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: srgnazarov@yahoo.co.uk
Россия, Staryi PetergofSt. Petersburg, 198504; St. Petersburg, 195251; St. Petersburg, 199178

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).