Finite-Dimensional Approximations of the Steklov–Poincaré Operator in Periodic Elastic Waveguides
- Авторлар: Nazarov S.A.1,2,3
-
Мекемелер:
- Faculty of Mathematics and Mechanics, St. Petersburg State University
- Peter the Great St. Petersburg State Polytechnic University
- Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
- Шығарылым: Том 63, № 7 (2018)
- Беттер: 307-311
- Бөлім: Mechanics
- URL: https://journals.rcsi.science/1028-3358/article/view/192390
- DOI: https://doi.org/10.1134/S1028335818070108
- ID: 192390
Дәйексөз келтіру
Аннотация
For anisotropic elastic waveguides with cylindrical or periodic outlets to infinity, artificial integro-differential conditions are developed at the end face of a truncated waveguide, which simulate the Steklov–Poincaré operator for scalar problems. Asymptotically sharp error estimates are derived in the definition of both the elastic fields themselves in the waveguide and the corresponding scattering coefficients.
Негізгі сөздер
Авторлар туралы
S. Nazarov
Faculty of Mathematics and Mechanics, St. Petersburg State University; Peter the Great St. Petersburg State Polytechnic University; Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: srgnazarov@yahoo.co.uk
Ресей, Staryi PetergofSt. Petersburg, 198504; St. Petersburg, 195251; St. Petersburg, 199178
Қосымша файлдар
