Polynomial integrals of mechanical systems on a torus with a singular potential


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem on integrability of the equations of motion of a material point on an n-dimensional Euclidean torus under the action of a force field with the potential energy having singularities at a finite number of points is considered. It is assumed that these singularities contain logarithmic coefficients and, consequently, have a more general form in comparison with power features. The potentials having power-type singularities were considered previously by V.V. Kozlov and D.V. Treshchev. In this work, it is proved that the equations of motion in the problem under consideration admit no nontrivial momentum-polynomial first integral with integrable coefficients on this torus.

Авторлар туралы

N. Denisova

Department of Mechanics and Mathematics

Хат алмасуға жауапты Автор.
Email: ndenis@mech.math.msu.su
Ресей, Moscow, 117192

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017