A multidimensional pendulum in a nonconservative force field under the presence of linear damping


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A nonconservative force field in the dynamics of a multidimensional solid is constructed according to the results from the dynamics of real solids occurring in the force field of the action of the medium. In this case, it becomes possible to generalize the equations of motion of a multidimensional solid in a similarly constructed field of forces and to obtain a complete list of, generally speaking, transcendental first integrals expressed through a finite combination of elementary functions. In the study, the integrability in elementary functions is shown for the simultaneous equations of motion of a dynamically symmetric fixed multidimensional solid under the action of a nonconservative pair of forces in the presence of the linear damping moment (the additional dependence of the force field on the tensor of angular velocity of the solid).

About the authors

M. V. Shamolin

Research Institute of Mechanics

Author for correspondence.
Email: shamolin@rambler.ru
Russian Federation, Moscow, 117192

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.