Application of Dynamic Diffractometry Method using Synchrotron Radiation to Study Phase Formation Processes during Synthesis of Mechanically Activated Ti–Al–C Mixture
- 作者: Sobachkin A.V1, Loginova M.V1, Sitnikov A.A1, Yakovlev V.I1, Filimonov V.Y.1,2, Myasnikov A.Y.1,3, Sharafutdinov M.R3,4
-
隶属关系:
- Polzunov Altai State Technical University
- Institute for Water and Environment Problems SB RAS
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Boreskov Institute of Catalysis of SB RAS
- 期: 编号 5 (2025)
- 页面: 12-21
- 栏目: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/356807
- DOI: https://doi.org/10.7868/S3034573125050023
- ID: 356807
如何引用文章
详细
By the method of dynamic diffractometry on synchrotron radiation beams, we conducted experimental studies of phase formation processes during the high-temperature synthesis of mechanically activated powder mixture Ti + Al + C. High-temperature synthesis was carried out in thermal explosion mode based on a microwave induction heater, in in situ mode, on an experimental complex adapted to the method of dynamic diffractometry. The experiments were conducted at the "Diffraction Cinema" station of VEPP-3, channel 5B, at Budker Institute of Nuclear Physics SB RAS. It has been experimentally determined that the synthesis of composite material occurs in multiple stages. The beginning of phase changes begins at a temperature of approximately 870°C. At the beginning, the formation of the intermetallic compound TiAl3 is observed. Then a Ti–Al melt is formed with the release of TiC grains, which provides the main heat release and initiates a thermal explosion reaction. Further, the Ti–Al melt, due to the dissolution of TiC grains in it, is saturated with carbon, and when the temperature reaches 1800°C, the MAX phase Ti2AlC crystallizes from it. The maximum amount of it is fixed at the exposure stage. With a decrease in temperature, along with Ti2AlC, the MAX phase of Ti3AlC2 is formed. At this stage, by controlling the temperature, it is possible to control the content of MAX phases in the reaction product. The composition of the final product includes Ti3AlC2, Ti2AlC and TiC.
作者简介
A. Sobachkin
Polzunov Altai State Technical University
编辑信件的主要联系方式.
Email: aniepi@rambler.ru
Barnaul, Russia
M. Loginova
Polzunov Altai State Technical University
Email: aniepi@rambler.ru
Barnaul, Russia
A. Sitnikov
Polzunov Altai State Technical University
Email: aniepi@rambler.ru
Barnaul, Russia
V. Yakovlev
Polzunov Altai State Technical University
Email: aniepi@rambler.ru
Barnaul, Russia
V. Filimonov
Polzunov Altai State Technical University; Institute for Water and Environment Problems SB RAS
Email: aniepi@rambler.ru
Barnaul, Russia; Barnaul, Russia
A. Myasnikov
Polzunov Altai State Technical University; Institute of Solid State Chemistry and Mechanochemistry SB RAS
Email: aniepi@rambler.ru
Barnaul, Russia; Novosibirsk, Russia
M. Sharafutdinov
Institute of Solid State Chemistry and Mechanochemistry SB RAS; Boreskov Institute of Catalysis of SB RAS
Email: aniepi@rambler.ru
Synchrotron Radiation Facility - Siberian Circular Photon Source "SKIF"
Novosibirsk, Russia; Novosibirsk, Russia参考
- Tomoshige R., Tanaka H. // Archives of Metallurgy and Materials. 2014. V. 59. № 4. P. 1575. https://www.doi.org/10.2478/amm-2014-0267
- Prikhna T.A., Dub S.N., Starostina A.V., Karpets M.V., Cabioshi T., Chartier P. // J. Superhard Mater. 2012. V. 34. P. 102. https://www.doi.org/10.3103/S1063457612020049
- Rahman A., Rahaman Z. // Am. J. Modern Phys. 2015. V. 4. Iss. 2. P. 75. https://www.doi.org/10.11648/j.ajmp.20150402.15
- Zhou A., Wang C., Huang Y. // Mater. Sci. Eng. A. 2003. V. 352. Iss. 1–2. P. 333. https://www.doi.org/10.1016/S0921-5093(02)00937-1
- Tzenov N.V., Barsoum M.W. // J. Am. Ceramic Soc. 2000. V. 83. Iss. 4. P. 825. https://www.doi.org/10.1111/j.1151-2916.2000.tb01281.x
- Yoshida M., Hoshiyama Y., Ommyojil J., Yamaguchi A. // Mater. Sci. Eng. B. 2010. V. 173. Iss. 1–3. P. 126. https://www.doi.org/10.1016/j.mseb.2010.01.006
- Barsoum M.W., El-Raghy T., Ali M. // Metallurgical Mater. Trans. A. 2000. V. 31. P. 1857. https://www.doi.org/10.1007/s11661-006-0243-3
- Potanin A.Yu., Loginov P.A., Levashov E.A., Pogozhev Yu.S., Patsera E.I., Kochetov N.A. // Eurasian Chemico-Technological Journal. 2015. V. 17. № 3. P. 233. https://www.doi.org/10.18321/ectj249
- Давыдов Д.М., Умеров Э.Р., Латухин Е.И., Амосов А.П. // Вектор науки Тольяттинского государственного университета. 2021. № 3. С. 37. https://www.doi.org/10.18323/2073-5073-2021-3-37-47.
- Pazniak A., Bazhin P., Shchetinin I., Kolesnikov E., Prokopets A., Shplis N., Stolin A., Kuznetsov D. // Ceramics Int. 2019. V. 45. № 2. P. 2020. https://www.doi.org/10.1016/j.ceramint.2018.10.101.
- Федотов А.Ф., Амосов А.П., Латухин Е.И., Ермович А.А., Давыдов Д.М. // Известия Самарского научного центра РАН. 2014. T. 16. № 6. C. 50.
- Ge Z., Chen K., Guo J., Zhou H., Ferreira J.M.F. // J. Europ. Ceramic Soc. 2003. V. 23. Iss. 3. P. 567. https://www.doi.org/10.1016/S0955-2219(02)00098-5
- Ковалев Л.Ю., Аверчеев О.А., Лучинина М.А., Бажин Н.М. // Известия вузов. Порошковая металлургия и функциональные покрытия. 2017. № 4. C. 11. https://www.doi.org/10.17073/1997-308X-2017-4-11-18
- Левашов Е.А., Погожев Ю.С., Штанский Д.В., Петржик М.И. // Известия вузов. Порошковая металлургия и функциональные покрытия. 2008. № 3. C. 13.
- Чумаков Ю.А., Князева А.Г., Прибытков Г.А. // Химическая физика и мезоскопия. 2020. T. 22. № 4. C. 405. https://www.doi.org/10.15350/17270529.2020.4.39
- Hendaoui A., Andasmas M., Amara A., Benalajia A., Langlois P., Vrel D. // Int. J. Self-Propagating High-Temperature Synthesis. 2008. V. 17. P. 129. https://www.doi.org/10.3103/S1061386208020088
- Прибытков Г.А., Криницын М.Г., Коржова В.В., Барановский А.В. // Известия вузов. Порошковая металлургия и функциональные покрытия. 2019. № 3. C. 26. https://www.doi.org/10.17073/1997-308X-2019-3-26-35
- Луц А.Р., Амосов Е.А., Рыбаков А.Д. // Вестник Брянского государственного технического университета. 2018. № 4. C. 31. https://www.doi.org/10.30987/article_5b28d195123e04-54135857
- Yang C., Jin S., Liang B., Liu G., Duan L., Jia S. // J. Alloys Compd. 2009. V. 472. Iss. 1–2. P. 79. https://www.doi.org/10.1016/j.jallcom.2008.04.031
- Zhou A., Wang C., Ge Z., Wu L. // J. Mater. Sci. Lett. 2001. V. 20. P. 1971. https://www.doi.org/10.1023/A:1013147121618
- Korchagin M.A., Gavrilov A.I., Grishina I.V., Dudina D.V., Ukhina A.V., Bokhonov B.B., Lyakhov N.Z. // Combustion, Explosion, and Shock Waves. 2022. V. 58. P. 46. https://www.doi.org/10.1134/S0010508222010051
- Hendaoui A., Vrel D., Amara A., Langlois P., Andasmas M., Gueroune M. // J. Europ. Ceramic Soc. 2010. V. 30. Iss. 4. P. 1049. https://www.doi.org/10.1016/j.jeurecamsoc.2009.10.001
- Ponomarev V.I., Kovalev D.Yu. // Int. J. Self-Propagating High-Temperature Synthesis. 2005. V. 14. № 2. P. 111.
- Rogachev A.S., Gachon J.-C., Grigoryan H.E., Vrel D., Schuster J.C., Sachkova N.V. // J. Mater. Sci. 2005. V. 40. P. 2689. https://www.doi.org/10.1007/s10853-005-2107-4
- Riley D.P., Kisi E.H., Hansen T.C., Hewat A.W. // J. Am. Ceramic Soc. 2002. 85. Iss. 10. P. 2417. https://www.doi.org/10.1111/j.1151-2916.2002.tb00474.x
- Bazhin P.M., Kovalev D.Yu., Luginina M.A., Averichev O.A. // Int. J. Self-Propagating High-Temperature Synthesis. 2016. V. 25. P. 30. https://www.doi.org/10.3103/S1061386216010027
- Filimonov V.Yu., Loginova M.V., Ivanov S.G., Sitnikov A.A., Yakovlev V.I., Sobachkin A.V., Negodyaev A.Z., Myasnikov A.Yu., Tolochko B.P., Sharafutdinov M.R. // Mater. Chem. Phys. 2020. V. 243. P. 122611. https://www.doi.org/10.1016/j.matchemphys.2019.122611
- Filimonov V.Yu., Loginova M.V., Sobachkin A.V., Ivanov S.G., Sitnikov A.A., Yakovlev V.I., Negodyaev A.Z., Myasnikov A.Yu. // Inorg. Mater. 2019. V. 55. P. 1097. https://www.doi.org/10.1134/S0020168519110049
- Loginova M., Sobachkin A., Sitnikov A., Yakovlev V., Filimonov V., Myasnikov A., Sharafutdinov M., Tolochko B. // J. Synchrotron Radiation. 2019. V. 26. P. 422. https://www.doi.org/10.1107/S1600577518017691
- Loginova M., Sobachkin A., Sitnikov A., Yakovlev V., Filimonov V., Myasnikov A., Sharafutdinov M., Tolochko B., Gradoboev A. // J. Synchrotron Radiation. 2019. V. 26. P. 1671. https://www.doi.org/10.1107/S1600577519010014
- Loginova M., Sobachkin A., Sitnikov A., Yakovlev V., Myasnikov A., Sharafutdinov M., Tolochko B., Golovina T. // J. Synchrotron Radiation. 2022. V. 29. P. 698. https://www.doi.org/10.1107/S1600577522002004
- Оводок Е.А., Ивановская М.И., Позняк С.К., Азарко И.И., Мичусик M., Анискевич А.Н. // Свиридовские чтения. Минск: Краснок-принт, 2021. Вып. 17. C. 47.
- Zou Y., Sun Z.M., Tada S., Hashimoto H. // Scripta Materialia. 2007. V. 56. Iss. 9. P. 725. https://www.doi.org/10.1016/j.scriptamat.2007.01.026
- Амосов Е.А., Ковалев Л.Ю., Латухин Е.И., Коновалихин С.В., Сычев А.Е. // Вестник Самарского государственного технического университета. Серия Технические науки. 2017. № 2. C. 161.
- Spencer C.B. Fiber-Reinforced Ti,SiC, and TiAlCO MAY Phase Composites. // Thesis in Materials Science and Engineering. Philadelphia: Drexel University, 2010. 92 p.
- Pang W.-K., Low I.-M., Sun Z.-M. // J. Am. Ceramic Soc. 2010. V. 93. Iss. 9. P. 2871. https://www.doi.org/10.1111/j.1551-2916.2010.03764.x
- Федотов А.Ф., Амосов А.П., Латухин Е.И., Новиков В.А. // Известия вузов. Цветная металлургия. 2015. № 6. C. 53. https://www.doi.org/10.17073/0021-3438-2015-6-53-62
- Аверичев О.А., Прохопец А.Д., Столин Л.А. // Новые огнеупоры. 2019. № 4. C. 57. https://www.doi.org/10.17073/1683-4518-2019-4-57-60
补充文件

