Study of Hydrogen Migration in Titanium Using a Vortex Electromagnetic Field and Accelerated Electrons in Subthreshold Values

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The migration of hydrogen in an in homogeneously hydrogen-saturated commercial titanium VT1-0 has been studied using a high-frequency electromagnetic field and an accelerated electron beam. The use of a high-frequency 50–1000 kHz electromagnetic field, which generates eddy currents in the material, made it possible to observe the process of hydrogen migration near the surface and in the depth of the sample. To accelerate the migration of hydrogen in the volume of the sample, electron irradiation with an energy of 30–45 keV was used. The migration process was studied in an inhomogeneously hydrogen-saturated commercial titanium sample with a titanium nitride film deposited on its surface by magnetron sputtering. Flat samples VT1-0 were saturated with hydrogen using the Sieverts method. The diffusion coefficient of hydrogen in titanium was determined from the change in the magnitude of the signal from the eddy current sensor along the depth of the sample and along the sample, as hydrogen migrated in the sample. The values of the diffusion coefficients of hydrogen along the surface and in the depth of the sample under equilibrium conditions and under stimulation by an accelerated electron beam are obtained.

作者简介

Yu. Tyurin

Tomsk National Research Polytechnic University

编辑信件的主要联系方式.
Email: tyurin@tpu.ru
俄罗斯联邦, Tomsk

V. Larionov

Tomsk National Research Polytechnic University

Email: tyurin@tpu.ru
俄罗斯联邦, Tomsk

参考

  1. Hydrogen in Metals. / Ed. Alefeld G., Volkl J. Berlin; Heidelberg; New York: Springer-Verlag, 1978. 427 p.
  2. Elias R.J., Corso H., Gervasioni J.L. // Intern. J. Hydrogen Energy. 2002. V. 27. P.91. https://www.doi.org/10.1016/S0360-3199(01)00082-9
  3. Evard E.A., Gabis I.E, Voyt A.P. // J. Alloys Compd. 2005. V. 404–406. № 8. Р. 335. https://www.doi.org/10.1016/j.jallcom.2005.05.001
  4. Scholz J., Zuchner H., Paulus H., Muller K-H. // J. Alloys Compd. 1997. V. 253–254. № 5. Р. 459. https://www.doi.org/10.1016/S0925-8388(96)03000-9
  5. Tyurin Yu.I., Chernov I.P. // Intern. J. Hydrogen Energy. 2002. V. 27. № 7–8. Р. 829. https://www.doi.org/10.1016/S0360-3199(01)00153-7
  6. Popov V.V., Basteev A.V., Solovey V.V., Prognimak A.M. // Intern. J. Hydrogen Energy. 1996. V. 21. № 4. Р. 259. https://www.doi.org/10.1016/0360-3199(95)00096-8
  7. Prognimak A.M. // J. Hydrogen Energy. 1995. V. 20. № 6. P. 449. https://www.doi.org/10.1016/0360-3199(94)00055-5
  8. Ikeya M., Miki T., Touge M. // Nature. 1981. V. 292. P. 613. https://www.doi.org/10.1038/292613a0
  9. Wang W.-E. // J. Alloy Compd. 1996. V. 238. № 1–2. P. 6. https://www.doi.org/10.1016/0925-8388(96)02264-5
  10. Нечаев Ю.С. // УФН. 2008. Т. 178. № 7. С. 709. https://www.doi.org/10.3367/UFNr.0178.200807b.0709
  11. Овчинников В.В. // УФН. 2008. Т. 178. № 9. С. 991. https://www.doi.org/10.3367/UFNr.0178.200809f.0991
  12. Кудияров В.Н., Лидер А.М., Пушилина Н.С., Тимченко Н.А. // ЖТФ. 2014. Т. 84. № 9. С. 117.
  13. Chernov I.P., Rusetsky A.S., Krasnov D.N., Larionov V.V., Sigfusson T.I., Tyurin Yu.I. // J. Eng. Thermophys. 2011. V. 20. № 4. Р. 360. https://www.doi.org/10.1134/S1810232811040059
  14. Hizhnyakov V., Haas M., Shelkan A., Klopov M. // Physica Scripta. 2014. V. 89. № 4. P. 044003. https://www.doi.org/10.1088/0031-8949/89/04/044003
  15. Dubinko V.I., Dovbnya A.N., Kushnir V.A., Khodak I.V., Lebedev V.P., Krylovskiy V.S., Lebedev S.V., Klepikov V.F., Ostapchuk P.N. // Phys. Solid State. 2012. V. 54. № 12. P. 2314.
  16. Dubinko V. I., Dubinko A. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 303. P. 133. https://www.doi.org/10.1016/j.nimb.2012.10.014
  17. Kashkarov E.B., Nikitenkov N.N., Tyurin Yu.I. // IOP. Conf. Series: Mater. Sci. Engineer. 2015. V. 81. P. 012017. https://www.doi.org/10.1088/1757-899X/81/1/012017
  18. Dobmann G., Altpeter I., Kopp M. // Rus. J. Nondestructive Testing. 2006. V. 42. № 4. P. 272. https://www.doi.org/10.1134/S1061830906040085
  19. Wolter B., Gabi Y., Conrad C. // Appl. Sci. 2019. V. 9. P. 1068. https://www.doi.org/10.3390/app9061068
  20. Xu Sh., Larionov V.V., Soldatov A.I., Chang J. // IEEE Trans. Instrum. Measurement. 2021. V. 70. P. 1001408. https://www.doi.org/10.1109/TIM.2020.3017899
  21. Larionov V.V., Xu Sh., Shi K., Kroning M.X. // Adv. Mater. Res. 2015. V. 1084. P. 21. https://www.doi.org/10.4028/www.scientific.net/amr.1084.21
  22. Куксин А.Ю., Рохманенков А.С., Стегайлов В.В. // ФТТ. 2013. Т. 55. № 2. С. 326. https://www.doi.org/10.1134/S1063783413020182
  23. Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Москва: Изд-во ВИЛС – МАТИ, 2009. 520 с.
  24. Ильин А.А., Колачев Б.А., Носов В.К., Мамонов А.М. Водородная технология титановых сплавов. Москва: Изд-во МИСиС, 2002. 392 с.
  25. Fukai Y. The Metal-Hydrogen System: Basic Bulk Properties. N.Y.: Springer 2009. 507 p.
  26. Rokhmanenkov A.S., Kuksin A.Yu., Yanilkin A.V. // Физика металлов и металловедение. 2017. Т. 118. № 1. С. 31. https://www.doi.org/10.7868/S0015323016100090
  27. Liu S., Wang Y.-G. // Chinese J. Nonferrous Metals. 2015. № 11. P. 3100.
  28. Wipf H. // Phys. Scr. 2001. V. 2001. № 1. P. 43. https://www.doi.org/10.1238/Physica.Topical.094a00043
  29. Takeda M., Kurisu H., Yamamoto S., Nakagawa H., Ishizawa K. // Appl. Surf. Sci. 2011. V. 258. № 4. P. 1405. https://doi.org/10.1016/j.apsusc.2011.09.092
  30. Hofman M.S., Wang D.Z., Yang Y., Koel B.E. // Surf. Sci. Rep. 2018. V. 73. № 4. P. 153. https://doi.org/10.1016/j.surfrep.2018.06.001
  31. Барашева Т.В., Анисимова И.А., Гуськова Е.И., Ермолова М.И. // Металловедение и термическая обработка металлов. 1978. № 4. С. 75.
  32. Святкин Л.А., Чернов И.П. Диффузионные барьеры для атома водорода в альфа-титане: расчеты из первых принципов // Тезисы докл. ХLVIII Междунар. Тулиновской конф. по физике взаимодействия заряженных частиц с кристаллами / Ред. Пана- сюк М.И. М.: Университетская книга, 2018. С. 92.
  33. Tyurin, Y.I., Nikitenkov, N.N., Sypchenko, V.S., Hongru Z., Syaole M. // Int. J. Hydrogen Energy. 2021. V. 46. № 37. P. 19523. https://doi.org/10.1016/j.ijhydene.2021.03.099
  34. Взаимодействие водорода с металлами // Ред. Захарова А.П. М.: Наука, 1987. 296 c.
  35. Гельд П.В., Рябов Р.А., Кодес Е.С. // Водород и несовершенства структуры металла. Москва: Металлургия, 1979. С. 85.
  36. Гапонцев А.В., Кондратьев В.В. // УФН. 2003. Т. 173. № 10. С. 1107. https://doi.org/10.3367/UFNr.0173.200310c.1107
  37. Коbeleva S.P. // Industrial Laboratory. 2007. V. 73. № 1. P. 60. http://dx.doi.org/10.17073/1609-3577-2016-3-210-216
  38. Pushilina N.S., Lider A.M., Kudiiarov V.N., Cher- nov I.P., Ivanova S.V. // J. Nucl. Mater. 2015. V. 456. P. 311. https://doi.org/10.1016/j.jnucmat.2014.10.006
  39. Yin W., Peyton A.J. // Independent Nondestructive Testing Evaluation Int. 2007. V. 40. Iss. 1. P. 43. https://doi.org/10.1016/j.ndteint.2006.07.009
  40. Soldatov A.I., Soldatov A.A., Sorokin P. V., Loginov E.L., Abouellail A.A., Kozhemyak O.A., Bortalevich S.I. An auger spectrometer control system. // Proc. 2016 Intern. Siberian Conference on Control and Communications (SIBCON). 2016. P. 1. https://doi.org/10.1109/SIBCON.2016.7491868
  41. Abouellail A.A., Obach I.I., Soldatov A.A., Sorokin P.V., Soldatov A.I. // Mater. Sci. Forum. 2018. V. 938. № P. 104. https://doi.org/10.4028/www.scientific.net/MSF.938.112
  42. Tyurin Y.I., Larionov V.V. // Metal Sci. Heat Treatment. 2018. V. 60. № 5–6. Р. 403. https://doi.org/10.1007/s11041-018-0291-5
  43. Тюрин Ю.И., Никитенков Н.Н., Ларионов В.В. // ЖФХ. 2011. Т. 85. № 6. С. 1148. https://doi.org/10.1134/S0036024411060318
  44. Сюй Ш., Ларионов В.В. // Международный журнал прикладных и фундаментальных исследований. 2019. № 2. C. 33.
  45. Belkhiria S., Briki C., Dhao M.H., Sdiri N., Jemni A., Askri F., Nasrallah S.B. // Int. J. Hydrogen Energy. 2017. V. 42. № 26. P. 16645. https://doi.org/10.1016/j.ijhydene.2017.04.295
  46. Sanz-Moral L.M., Navarrete A., Sturm G., Link G., Rueda M., Stefanidis G., Martín A. // J. Power Sources. 2017. V. 353. № 6. P. 131. https://doi.org/10.1016/j.jpowsour.2017.03.110

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##