Effect of deformation nanostructuring on ion-beam erosion of copper

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of deformation nanostructuring on ion-beam erosion of copper at high fluences of irradiation with 30 keV argon ions was experimentally studied. Deformation nanostructuring by high-pressure torsion was used to form an ultrafine grained structure with a grain size of ~0.4 µm in copper samples with an initial grain size about 2 µm. It was found that when a layer of thickness comparable to the grain size was sputtered, a steady-state cone-shaped relief was formed on the copper surface, the appearance of which did not change with increasing irradiation fluence. It has been shown that the smaller the grain size in copper, the greater the concentration and the smaller the cone height on the surface. The cone inclination angles, close to 82°, as well as the sputtering yield of 9.6 at./ion, practically does not depend on the copper grain size, the thickness of the sputtered layer, and the irradiation fluence. Calculations using the SRIM code showed that when taking into account the sputtering of atoms from the walls of the cones, the sputtering yield of a cone-shaped copper relief Үc, was 3.5 times less than the yield of a single cone, 1.2 times greater than the sputtering yield of a smooth surface, and the value of 9.25 at./ion was close to the experimentally measured one.

作者简介

N. Andrianova

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Moscow Aviation Institute

Email: anatoly_borisov@mail.ru
俄罗斯联邦, 119991, Moscow; 125993, Moscow

A. Borisov

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Moscow Aviation Institute; Moscow State University of Technology “STANKIN”

编辑信件的主要联系方式.
Email: anatoly_borisov@mail.ru
俄罗斯联邦, 119991, Moscow; 125993, Moscow; 127055, Moscow

M. Ovchinnikov

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: anatoly_borisov@mail.ru
俄罗斯联邦, 119991, Moscow

R. Khisamov

Institute for Metals Superplasticity Problems, Russian Academy of Sciences

Email: anatoly_borisov@mail.ru
俄罗斯联邦, 450001, Ufa

R. Mulyukov

Institute for Metals Superplasticity Problems, Russian Academy of Sciences

Email: anatoly_borisov@mail.ru
俄罗斯联邦, 450001, Ufa

参考

  1. Efe M., El-Atwani O., Guoc Y., Klenosky D.R. // Scripta Mater. 2014. V. 70. P. 31. https://doi.org./10.1016/j.scriptamat.2013.08.013
  2. Chen Z., Niu L-L., Wang Z., Tian L., Kecskes L, Zhu K., Wei Q. // Acta Mater. 2018. V. 147. P. 100. https://doi.org./10.1016/j.actamat.2018.01.015
  3. Wurmshuber M., Doppermann S., Wurster S., Jakob S., Balooch M., Alfreider M., Schmuck K., Bodlos R., Roma-ner L., Hosemann P., Clemens H., Maier-Kiener V., Kie-ner D. // Int. J. Refract. Met. Hard Mater. 2023. V. 111. Р. 106125. https://doi.org./10.1016/j.ijrmhm.2023.106125
  4. Nagasaki T., Hirai H., Yoshino M., Yamada T. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 418. P. 34. https://doi.org./10.1016/j.nimb.2017.12.023
  5. Michaluk C.A. // J. Electron. Mater. 2002. V. 31. P. 2. https://doi.org./10.1007/s11664-002-0165-9
  6. Chen J.-K., Tsai B.-H., Huang H.-S. // Mater. Trans. 2015. V. 56. P. 665. https://doi.org./10.2320/matertrans.M2014411
  7. Reza M., Sajuri Z., Yunas J., Syarif J. // IOP Conf. Ser.: Mater. Sci. Eng. 2016. V. 114. P. 012116. https://doi.org./10.1088/1757-899X/114/1/01211
  8. Voitsenya V.S., Balden M., Bardamid A.F., Bondaren- ko V.N., Davis J.W., Konovalov V.G., Ryzhkov I.V., Skoryk O.O., Solodovchenko S.I., Zhang-jian Z. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 302. P. 32. https://doi.org./10.1016/j.nimb.2013.03.005
  9. Belyaeva A.I., Kolenov I.V., Savchenko A.A., Galu- za A.A., Aksenov D.A., Raab G.I., Faizova C.N., Voitsenya V.S., Konovalov V.G., Ryzhkov I.V., Skorik O.A., Solodovchenko S.I., Bardamid A.F. // Probl. At. Sci. Technol. Ser. Thermonuclear Fusion. V. 34. Iss. 4. P. 50.
  10. Yang W., Zhao G., Wang Y., Wang S., Zhan S., Wang D., Bao M., Tang B., Yao L., Wang X. // J. Mater. Sci.: Mater. Electron. 2021. V. 32. P. 26181. https://doi.org./10.1007/s10854-021-06645-4
  11. Depla D. // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 328. P. 65. https://doi.org./10.1016/j.nimb.2014.03.001
  12. Raggl S., Postler J., Winkler J., Strauss G., Feist C., Plankensteiner A., Eidenberger-Schober M., Scheier P. // J. Vac. Sci. Technol. A. 2017. V. 35. P. 061308. https://doi.org./10.1116/1.4996074
  13. Wang S.-K., Yang W-H., Wang Y.-P., Zhao G-H., Zhan S-S., Wang D., Tang B., Bao M.-D. // Vacuum. 2022. V. 201. P. 111083. https://doi.org./10.1016/j.vacuum.2022.111083
  14. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. Amsterdam: North-Holland, 1985. 444 p.
  15. Behrish R., Eckstein W. Sputtering by Particle Bombardment. Berlin–Heidelberg: Springer-Verlag, 2007. 509 p. https://doi.org./10.1007/978-3-540-44502-9
  16. Smirnova N.A., Levit V.I., Pilyugin V.P. et al. // Phys Met. Met. 1986. V. 61. P. 1170.
  17. Nazarov A.A., Mulyukov R.R. Nanostructred Materials. // Handbook of NanoScience. Engineering and Technology. Boca Raton: CRC Press, 2002. P. 22. https://doi.org./10.1201/9781420040623
  18. Markushev M.V., Avtokratova E.V., Krymskiy S.V., Tereshkin V.V., Sitdikov O.Sh. // Lett. Mater. 2022. V. 12. Iss. 4s. P. 463. https://doi.org./10.22226/2410-3535-2022-4-463-468
  19. Khisamov R.Kh., Khalikova G.R., Kistanov A.A., Korznikova G.F., Korznikova E.A., Nazarov K.S., Sergeev S.N., Shayakhmetov R.U., Timiryaev R.R., Yumaguzin Yu.M., Mulyukov R.R. // Continuum Mech. Thermodyn. 2023. V. 35. P. 1433. https://doi.org./10.1007/s00161-022-01145-0
  20. Sun M., Ding C., Xu J., Shan D., Guo B., Langdon T.G. // Crystals. 2023. V. 13. P. 887. https://doi.org./10.3390/cryst13060887
  21. Zhilyaev A.P., Sergeev S.N., Langdon T.G. // J. Mater. Res. Technol. 2014. V. 3. P. 338. https://doi.org./10.1016/j.jmrt.2014.06.008
  22. Auciello O. // J. Vac. Sci. Technol. 1981. V. 19. P. 841. https://doi.org./10.1116/1.571224
  23. Carter G., Nobes M.J., Whitton J.L. // Appl. Phys. A. 1985. V. 38. P. 77. https://doi.org./10.1007/BF00620458
  24. Begrambekov L.B., Zakharov A.M., Telkovsky V.G. // Nucl. Instrum. Methods Phys. Res. B. 1996. V. 115. P. 456. https://doi.org./10.1016/0168-583X(95)01514-0
  25. Brackmann V., Hoffmann V., Kauffmann A., Helth A., Thomas J., Wendrock H., Freudenberger J., Gemming T., Eckert J. // Mater. Charact. 2014. V. 91. P. 76. https://doi.org./10.1016/j.matchar.2014.02.002
  26. Westmacott K.H., Smallman R.E. // Phill. Mag. 1956. V. 1. P. 34. https://doi.org./10.1080/14786435608238074
  27. Khisamov, R.K., Nazarov, K.S., Zubairov L.R.,Naza-rov A.A., Mulyukov R.R., Safarov I.M., Sergeev S.N., Musabirov I.I., Phuong D.D., Trinh P.V., Luan N.V., Minh P.N., Huan N.Q. // Phys. Solid State. 2015. V. 57. P. 1206. https://doi.org./10.1134/S1063783415060177
  28. Жукова Ю.Н., Машкова Е.С., Молчанов В.А., Сотников В.М., Экштайн В. // Изв. АН. Сер. физ. 1994. Т. 58. № 3. С. 92.
  29. Андрианова Н.Н., Борисов А.М., Машкова Е.С., Немов А.С. // Поверхность. 2005. № 3. C. 79.
  30. Chan W.L., Chason E. //J. Appl. Phys. 2007. V. 101. P. 121301. https://doi.org./10.1063/1.2749198
  31. Littmark U., Hofer W.O. // J. Mater. Sci. 1978. V. 13. P. 2577. https://doi.org./10.1007/BF00552687
  32. Kustner M., Eckstein W., Dose V., Roth J. // Nucl. Instrum. Methods Phys. Res. B. 1998. V. 145. P. 320. https://doi.org./10.1016/S0168-583X(98)00399-1
  33. Makeev M.A., Barabasi A.-L. // Nucl. Instrum. Methods Phys. Res. B. 2004. V. 222. P. 316. https://doi.org./10.1016/j.nimb.2004.02.027..
  34. Stadlmayr R., Szabo P.S., Berger B.M., Cupak C., Chiba R., Blöch D., Mayer D., Stechauner B., Sauer M., Foelske-Schmitz A., Oberkofler M., Schwarz-Selin- ger T., Mutzke A., Aumayr F. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 430. P. 42. https://doi.org./10.1016/j.nimb.2018.06.004
  35. Shulga V.I. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 1346. https://doi.org./10.1134/S1027451020060440
  36. Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Khisamov R.K., Mulyukov R.R. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. P. S66. https://doi.org./10.31857/S1028096022030062
  37. Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Khisamov R.K., Mulyukov R.R. // Tech. Phys. Lett. 2022. V. 48. Iss. 6. P. 55. https://doi.org./10.21883/TPL.2022.06.53792.19146
  38. Cupak C., Szabo P.S., Biber H., Stadlmayr R., Grave C., Fellinger M., Brötzner J., Wilhelm R.A., Möller W., Mutzke A., Moro M.V., Aumayr F. // Appl. Surf. Sci. 2021. V. 570. P. 151204. https://doi.org./10.1016/j.apsusc.2021.151204
  39. Szabo P.S., Cupak C., Biber H., Jaggi N., Galli A., Wurz P., Aumayr F. // Surf. Interfaces. 2022. V. 30. P. 101924. https://doi.org./10.1016/j.surfin.2022.101924
  40. Diddens C., Linz S.J. // Eur. Phys. J. B. 2015. V. 88. P. 190. https://doi.org./10.1140/epjb/e2015-60468-7
  41. Ziegler J.F., Biersack J.P. SRIM, 2013. http://www.srim.org

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM images of the surface (a, c) and grain size distribution (b, d) in fine-grained (a, b) and ultrafine-grained (c, d) copper samples.

下载 (839KB)
3. Fig. 2. SEM images of an ultrafine-grained sample after irradiation with Ar+ ions with an energy of 30 keV with a fluence of 3 × 1018 ions/cm2 at a shooting angle of 0° (a) and 45°(b). A three-dimensional image of the surface obtained using the NanoScan-3D nanohardomer (c) and its profile (d).

下载 (788KB)
4. Fig. 3. SEM images of a fine-grained sample after irradiation with Ar+ ions with an energy of 30 keV with different fluence: a – 3 × 1018; b – 9 × 1018; c – 1.5 × 1019 ion/cm2. The shooting angle is 45°.

下载 (624KB)
5. Fig. 4. Dependence of the decrease in mass Δm and the thickness of the sprayed layer Δx on the irradiation fluence of ultrafine–grained (UMZ) (●) (grain size 50 nm-1.2 microns) and fine-grained (MZ) samples (🞐) (grain size 500 nm–10 microns).

下载 (237KB)
6. Fig. 5. Distribution of the angles of inclination of the cones for fine-grained (1, 2) and ultrafine-grained (3, 4) copper samples irradiated at various fluences: 1.5×1019 (1); 3×1018 (2); 9×1018 (3); 3×1018 See-2 (4).

下载 (195KB)
7. Fig. 6. Dependence of the fraction of dusty atoms F on the angle of inclination of the elements of the rough surface [38] and the size ratio A = a/b.

下载 (103KB)
8. Fig. 7. Dependence of the sputtering coefficient Y on the angle of inclination θ in the case of a single cone (1) and a cone-shaped relief (2) on the copper surface when irradiated with Ar+ ions with an energy of 30 keV (the dotted line indicates the average angle of inclination of the cones in Fig. 5).

下载 (131KB)
9. Fig. 8. Dependence of the sputtering coefficient Y on the thickness of the sprayed layer Δx for ultrafine–grained (●) (grain size 50 nm-1.2 microns) and fine-grained samples (🞐) (grain size 500 nm– 10 microns) when irradiated with Ar+ ions with an energy of 30 keV: 1 – the average value from the experiment; 2, 3 – calculated values for a surface with cones and a smooth surface, respectively.

下载 (78KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##