Synthesis and Structure of the Nanosized Cobalt Coatings on Porous Aluminum Oxide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of studies of the morphology and chemical structure of cobalt coatings deposited by magnetron sputtering on nanostructured surfaces of porous alumina with different morphologies are presented. The morphology of porous alumina was specified by the anodization voltage in solutions of sulfuric (25 V) and oxalic (40 and 120 V) acids. Using scanning electron and atomic force microscopy, it has been shown that the coatings have morphological features, which are hexagonally arranged nanoparticles formed at the boundaries between pores. With an increase in the size of nanopores on the surface of the substrates, the size and shape of the morphological features of the deposited coatings change. According to X-ray absorption fine structure spectroscopy and fine structure spectroscopy of the near region of the X-ray absorption edge, there are changes in the local atomic structure of cobalt, in particular, cobalt in a coating sample deposited on the surface of porous alumina obtained by anodizing at a voltage of 25 V in sulfuric acid, oxidized more strongly, which is associated with greater chemical activity due to the smaller sizes of the nanoparticles that make up the coating. The results obtained will allow in the future to make a directed change in the formation of structure-sensitive properties, such as chemical and electrochemical activity, magnetic sensitivity, of the resulting coatings.

作者简介

R. Valeev

Udmurt Federal Research Center of the Ural Branch of the RAS

编辑信件的主要联系方式.
Email: rishatvaleev@mail.ru
Russia, 426008, Izhevsk

A. Alalykin

Udmurt Federal Research Center of the Ural Branch of the RAS

Email: rishatvaleev@mail.ru
Russia, 426008, Izhevsk

A. Beltiukov

Udmurt Federal Research Center of the Ural Branch of the RAS

Email: rishatvaleev@mail.ru
Russia, 426008, Izhevsk

V. Kriventsov

Boreskov's Catalysis Institute of Siberian Branch of the RAS

Email: rishatvaleev@mail.ru
Russia, 630090, Novosibirsk

参考

  1. Lazzari J., Melnick I., Randet D. // IEEE Trans. Magnetics. 1967. V. 3. Iss. 3. P. 205. https://www.doi.org/10.1109/TMAG.1967.1066051
  2. Zhang X., Lee C.S.-M., Mingos D.M.P., Hayward D.O. // Appl. Catalysis A: General. 2003. V. 248. Iss. 1–2. P. 129. https://www.doi.org/10.1016/S0926-860X(03)00154-6
  3. Rytter E., Aaserud C., Hilmen A.-M., Bergene E., Holmen A. // Catalysts. 2022. V. 12. № 1. P. 65. https://www.doi.org/10.3390/catal12010065
  4. Jimenez J.D., Wen C., Royko M.M., Kropf A.J., Segre C., Lauterbach J. // Chem. Cat. Chem. 2020. V. 12. Iss. 3. P. 846. https://www.doi.org/10.1002/cctc.201901676
  5. Ahmed S., Nelson P.A., Gallagher K.G., Susarla N., Dees D.W. // J. Power Sources. 2017. V. 342. P. 733. https://www.doi.org/10.1016/j.jpowsour.2016.12.069
  6. Zhao H., Lam W.-Y.A., Sheng L., Wang L., Bai P., Yang Y., Ren D., Xu H., He X. // Adv. Energy Mater. 2022. V. 12. Iss. 16. P. 2103894. https://www.doi.org/10.1002/aenm.202103894
  7. Liu S., Tian J., Zhang W. // Nanotechnology. 2021. V. 32. № 22. P. 222 001. https://www.doi.org/10.1088/1361-6528/abe25f
  8. Valeev R.G., Beltiukov A.N., Alalykin A.S., Kriventsov V.V. // AIP Conference Proc. 2020. V. 2299. P. 080001. https://www.doi.org/10.1063/5.0030668
  9. Валеев Р.Г., Алалыкин А.С. // Российские нанотехнологии. 2019. Т. 14. № 7–8. С. 58.
  10. Валеев Р.Г., Сташкова В.В., Алалыкин А.С. // Журн. технической физики. 2020. Т. 90. Вып. 3. С. 494. https://www.doi.org/10.21883/JTF.2020.03.48938.301-19
  11. Masuda H., Fukuda K. // Science. 1995. V. 268. Iss. 5216. P. 1466. https://www.doi.org/10.1126/science.268.5216.1466
  12. Santos A., Formentin P., Pallares J., Ferre-Borrull J., Marsal L.F. // J. Electroanal. Chem. 2011. V. 655. Iss. 1. P. 73. https://www.doi.org/10.1016/j.jelechem.2011.02.005
  13. Klementev K.V. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. Iss. 1–2. P. 299. https://www.doi.org/10.1016/S0168-9002(99)00710-X
  14. Barbier A., Tuel A., Arčon I., Kodre A., Antonin M.G. // J. Catalysis. 2001. V. 200. P. 106. https://www.doi.org/10.1006/jcat.2001.3204
  15. Dorovskikh S.I., Hairullin R.R., Sysoev S.V., Kriventsov V.V., Panin A.V., Shubin Y.V., Morozova N.B., Gelfond N.V., Korenev S.V. // Surf. Engineer. 2016. V. 32. Iss. 1. P. 8. https://www.doi.org/10.1179/1743294414Y.0000000424
  16. Khodakov A.Y., Chu W., Fongarland P. // Chem. Rev. 2007. V. 107. № 5. P. 1692. https://www.doi.org/10.1021/cr050972v
  17. Zakharov Y.A., Pugachev V.M., Kriventsov V.V., Popova A.N., Tolochko B.P., Bogomyakov A.S., Dodonov V.G., Karpushkina Y.V. // Bull. RAS: Phys. 2013. V. 77. № 2. P. 142. https://www.doi.org/10.3103/S106287381302041X
  18. Moodley D.J. // On the deactivation of cobalt-based Fischer-Tropsch synthesis catalysts, Doctoral thesis, Schuit Institute of Catalysis, Laboratory of Inorganic Chemistry and Catalysis, Eindhoven University of Technology, Eindhoven, Netherlands, 2008.
  19. Ильин А.П., Коршунов А.В., Толбанова Л.О. // Известия Томского политехнического университета. 2009. Т. 314. № 3. С. 35.
  20. ICSD Database (2023) FIZ Karlsruhe GmbH, Germany. https://icsd.products.fiz-karlsruhe.de/

补充文件

附件文件
动作
1. JATS XML
2.

下载 (77KB)
3.

下载 (1MB)
4.

下载 (1MB)
5.

下载 (200KB)

版权所有 © Р.Г. Валеев, А.С. Алалыкин, А.Н. Бельтюков, В.В. Кривенцов, 2023

##common.cookie##