The Use of Crystals with an Asymmetric Reflection Geometry to Measure the Parameters of Electron Beams

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The prospects of using crystals with asymmetric reflection geometry to determine the transverse size of relativistic electron beams based on the results of measurements of angular distributions of their radiation in a thin crystal for two distances between it and a coordinate detector are discussed. An experimental test of this technique was carried out using an imaging plate as a two-dimensional position-sensitive detector. Measurements were made for the electron energy of 255 MeV and reflection (220) in a silicon crystal with a thickness of 20 microns and a pixel size of 35 × 35 µm2. The distances between the crystal and the detector were 0.5 and 1 m. The obtained values of the horizontal and vertical beam sizes \({{\sigma }_{x}} = 0.32 \pm 0.02\,\,~{\text{mm}}\) and \({{\sigma }_{y}} = 1.35 \pm 0.02~\,\,{\text{mm}}\) are in satisfactory agreement with the measurement results for optical transition radiation. The possibility of characterizing X-ray plates by comparing the measured and calculated PXR angular distributions for several reflecting planes of crystals with an asymmetric reflection geometry and an asymmetry parameter ε less than unity is discussed.

作者简介

A. Berdnichenko

Belgorod National Research University

Email: vnukov@bsu.edu.ru
308015 Russia, Belgorod

I. Vnukov

Belgorod National Research University

编辑信件的主要联系方式.
Email: vnukov@bsu.edu.ru
308015 Russia, Belgorod

Y. Goponov

Belgorod National Research University

Email: vnukov@bsu.edu.ru
308015 Russia, Belgorod

Y. Takabayashi

SAGA Light Source

Email: vnukov@bsu.edu.ru
Japan, 841-0005, Saga, Tosu

参考

  1. Fiorito R.B. Recent advances in OTR beam diagnostics // Materials of Proceedings of Particle Accelerator Conference 09. Vancouver, Canada. May 4–8, 2009. P. 741.
  2. The European X-ray Free-Electron Laser Technical Design Report // DESY 2006–097. 2007
  3. Loos H., Akre R., Decker F.-J., Ding Y., Dowell D., Emma P., Frisch J., Gilevich S., Hays G.R., Hering P., Huang Z., Iverson R., Limborg–Deprey C., Miahnahri A., Nuhn H.-D., Turner J.L., Welch J., White W., Wu J., Ratner D. Observation of Coherent Optical Transition Radiation in the LCLS Linac // Materials of Proceedings of FEL08. Gyeongju, Korea. August 24–29, 2008. P. 485.
  4. Gogolev A., Potylitsyn A., Kube G. // J. Phys. Conf. Ser. 2012. V. 357. P. 012018. https://www.doi.org/10.1088/1742–6596/357/1/012018
  5. Takabayashi Y. // Phys. Lett. A. 2012. V. 376. P. 2408. https://www.doi.org/10.1016/j.physleta.2012.06.001
  6. Takabayashi Y., Sumitani K. // Phys. Lett. A. 2013. V. 377. P. 2577. https://www.doi.org/10.1016/j.physleta.2013.07.035
  7. Kube G., Behrens C., Gogolev A.S., Popov Yu.P., Potylitsyn A.P., Lauth W., Weisse S. // Proceedings of IPAC2013. 2013. P. 491.
  8. Внуков И.Е., Гопонов Ю.А., Сиднин М.А., Шатохин Р.А., Sumitani K, Takabayashi Y. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 6. С. 57. https://www.doi.org/10.1134/S0207352819060143
  9. Goponov Yu.A., Laktionova S.A., Shatokhin R.A., Sidnin M.A., Sumitani K., Takabayashi Y., Vnukov I.E. // Phys. Rev. Accel. Beams. 2019. V. 22. P. 082803. https://www.doi.org/10.1103/PhysRevAccelBeams. 22.082803
  10. Rullhusen R., Artru X., Dhez P. Novel Radiation Sources Using Relativistic Electrons. Singapore: World Scientific, 1999. 212 p.
  11. Goponov Yu.A., Laktionova S.A., Pligina O.O., Sidnin M.A., Vnukov I.E. // Nucl. Instrum. Methods Phys. Res. B. 2015. V. 355. P. 150. https://www.doi.org/10.1016/j.nimb.2015.03.068
  12. Goponov Yu.A., Shatokhin R.A., Sidnin M.A., Sumitani K., Takabayashi Y., Vnukov I.E., Volkov I.S. // JINST 15. 2020. № C04025. https://www.doi.org/10.1088/1748–0221/15/04/C04025
  13. Goponov Yu.A., Shatokhin R.A., Sumitani K., Takabayashi Y. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 996. P. 165132. https://www.doi.org/10.1016/j.nima.2021.165132
  14. Blazhevich S.V., Bronnikova M.V., Noskov A.V. // Phys. Lett. A. 2020. V. 384. P. 126321. https://www.doi.org/10.1016/j.physleta.2020.126321
  15. Блажевич С.В., Бронникова М.В., Носков А.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед.. 2020. № 9. С. 66. https://www.doi.org/10.31857/S1028096020080051
  16. Blazhevich S.V., Noskov A.V. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 441. P. 119. https://www.doi.org/10.1016/j.nimb.2018.12.043
  17. Berdnichenko A.V., Shatokhin R.A., Takabayashi Y., Vnukov I.E. // Phys. Lett. A. 2021. V. 409. P. 127537. https://www.doi.org/10.1016/j.physleta.2021.127537
  18. Бердниченко А.В., Внуков И.Е., Гопонов Ю.А., Шатохин Р.А., Takabayashi Y. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 5. С. 94. https://www.doi.org/10.31857/S1028096022050053
  19. Takabayashi Y., Shchagin A.V. // Nucl. Instrum. Methods Phys. Res. B. 2012. V. 278. P. 78. https://www.doi.org/10.1016/j.nimb.2012.02.021
  20. Silva A.S.S., Gomes C.S., Machado A.S., Nascimento J.R., Santos R.S., Oliveira D.F., Dos Anjos M.J., Lopes R.T. // X-ray Spectrometry. 2019. V. 48. Iss. 5. P. 375. https://www.doi.org/10.1002/xrs.3016
  21. Meadowcroft A.L., Bentley C.D., Stott E.N. // Rev. Sci. Instrum. 2008. V. 79. https://www.doi.org/0034–6478/2008/79(11)113102/ 4/$23.00
  22. Berdnichenko A.V., Goponov Yu.A., Shatokhin R.A., Takabayashi Y., Vnukov I.E. // Nuclear Inst. and Methods in Physics Research. A. 2022. V. 1032. P. 166619. https://www.doi.org/10.1016/j.nima.2022.1666
  23. Berger M.J., Hubbell J.H., 2017. Photon Cross Sections Database. NIST. http://www.nist.gov/pml/data/xcom/index.cfm. Cited 21 March, 2022.
  24. Goponov Yu.A., Sidnin M.A., Vnukov I.E., Behrens C., Kube G., Lauth W., Gogolev A.S., Potylitsyn A.P. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 402. P. 83. https://www.doi.org/ 10.1016/j.nimb.2017.03.006
  25. Goponov Yu.A., Laktionova S.A., Sidnin M.A., Vnukov I.E. // Nucl. Instrum. Methods. Phys. Res. B. 2017. V. 402. P. 92. https://www.doi.org/1016/j.nimb.2017.02.068
  26. Brenzinger K.H., Herberg C., Limburg B., Backe H., Dambach S., Euteneuer H., Hagenbuck F., Hartmann H., Johann K., Kaiser K.H., Kettig O., Knies G., Kube G., Lauth W., Schöope H., Walcher Th. // Z. Phys. 1997. V. 358. P. 107. https://www.doi.org/10.1007/s002180050283
  27. Внуков И.Е., Волков И.С., Гопонов Ю.А., Сиднин М.А., Шатохин Р.А. // Прикладная математика и физика. 2020. № 52(2). С. 152. https://www.doi.org/10.18413/2687–0959–2020–52–2–152–168
  28. Потилицын А.П. // Изв. ВУЗов “Физика”. 1998. Т. 41. № 4. С. 26.
  29. Лобко А.С. Экспериментальные исследования параметрического рентгеновского излучения. Минск: БГУ, 2006. 201 с.
  30. Brenzinger K.-H., Limburg B., Backe H., Dambach S., Euteneuer H., Hagenbuck F., Herberg C., Kaiser K.H., Ketting O., Kube G. // Phys. Rev. Lett. 1997. V. 79. № 13. P. 2462. https://www.doi.org/10.1103/PhysRevLett.79.2462

补充文件

附件文件
动作
1. JATS XML
2.

下载 (146KB)
3.

下载 (386KB)
4.

下载 (450KB)
5.

下载 (286KB)
6.

下载 (399KB)
7.

下载 (242KB)

版权所有 © А.В. Бердниченко, И.Е. Внуков, Ю.А. Гопонов, Ю. Такабайаши, 2023

##common.cookie##