Mechanisms of Strengthening Aluminum Foils Consolidated by High-Pressure Torsion Technique

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The contributions of grain boundary and dislocation mechanisms to the experimentally established strengthening of pure Al samples obtained by consolidation of thin foils by high pressure torsion technique were estimated within the framework of well-known theoretical models using structural parameters (sizes of coherently scattering domains and lattice microstrains) determined by X-ray diffraction. Good agreement between the calculated values and the hardness of deformed and aged samples was found, and possible reasons for their differences for the initial foils were discussed. The influence of deformation and aging on the relative contributions of the analyzed mechanisms to the strengthening of samples consolidated from both Al foils and the rapidly quenched Al95.8Mn3.8Fe0.4 ribbons was determined. The structural features of samples processed by high pressure torsion and the relationship between structural parameters and mechanical properties were discussed.

Sobre autores

E. Sviridova

A.A. Galkin Donetsk Institute for Physics and Engineering; Donbas National Academy of Civil Engineering and Architecture

Autor responsável pela correspondência
Email: ksvir@list.ru
Rússia, Donetsk; Makеyеvka

S. Vasiliev

A.A. Galkin Donetsk Institute for Physics and Engineering; Donbas National Academy of Civil Engineering and Architecture

Email: ksvir@list.ru
Rússia, Donetsk; Makеyеvka

A. Limanovsky

A.A. Galkin Donetsk Institute for Physics and Engineering

Email: ksvir@list.ru
Rússia, Donetsk

V. Varyukhin

A.A. Galkin Donetsk Institute for Physics and Engineering

Email: ksvir@list.ru
Rússia, Donetsk

V. Tkach

A.A. Galkin Donetsk Institute for Physics and Engineering

Email: ksvir@list.ru
Rússia, Donetsk

Bibliografia

  1. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. // Progr. Mater. Sci. 2000. V. 45. P. 103. https://www.doi.org/10.1016/s0079-6425(99)00007-9
  2. Estrin Y., Vinogradov A. // Acta Mater. 2013. V. 61. P. 782. https://www.doi.org/10.1016/j.actamat.2012.10.038
  3. Alexandrov I.V., Zhu Y.T., Lowe T.C., Islamgaliev R.K., Valiev R.Z. // Nanostruct. Mater. 1998. V. 10. № 1. P. 45. https://www.doi.org/10.1016/S0965-9773(98)00026-9
  4. Валиев Р.З., Пушин В.Г., Гундеров Д.В., Попов А.Г. // ДАН. 2004. T. 398. № 1. C. 54.
  5. Орлова Т.С., Садыков Д.И., Мурашкин М.Ю., Казыханов В.У., Еникеев Н.А. // ФТТ. 2021. T. 63. Вып. 10. C. 1572. https://www.doi.org/10.21883/FTT.2021.10.51408.104
  6. Михеев В.А., Журавель Л.В. // Изв. вузов. Цветная металлургия. 2016. № 3. C. 56. https://www.doi.org/10.17073/0021-3438-2016-3-56-64
  7. Orlova T.S., Mavlyutov A.M., Latynina T.A., Ubyivovk E.V., Murashkin M.Yu., Schneider R., Gerth- sen D., Valiev R.Z. // Rev. Adv. Mater. Sci. 2018. V. 55. P. 92. https://www.doi.org/10.1515/rams-2018-0032
  8. Adachi H., Osamura K., Ochiai Sh., Kusui J., Yokoe K. // Scr. Mater. 2001. V. 44. P. 1489. https://www.doi.org/10.1016/S1359-6462(01)00715-1
  9. Huang X., Kamikawa N., Hansen N. // Mater. Sci. Eng. A. 2008. V. 483–484. P. 102. https://www.doi.org/10.1016/j.msea.2006.10.173
  10. Васильев С.В., Цветков Т.В., Свиридова Е.А., Ткаченко В.М., Лимановский А.И., Саяпин В.Н., Ткач В.И. // Физика и техника высоких давлений. 2022. T. 32. № 1. C. 8.
  11. Свиридова Е.А., Цветков Т.В., Ткаченко В.М., Лимановский А.И., Саяпин В.Н., Васильев С.В., Ткач В.И. // Тр. Кольского науч. центра РАН. Сер. Тех. науки. 2022. Вып. 6. Т. 13. № 1. С. 223. https://www.doi.org/10.37614/2949-1215.2022.13.1.039
  12. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ. М.: МИСИС, 2002. 360 с.
  13. Свиридова Е.А., Цветков Т.В., Ткаченко В.М., Лимановский А.И., Саяпин В.Н., Васильев С.В., Ткач В.И. // Тр. Кольского науч. центра РАН. 2021. Вып. 5. Т. 12. № 2. С. 219. https://www.doi.org/10.37614/2307-5252.2021.2.5.045
  14. Sanchez-Bajo F., Ortiz A.L., Cumbrera F.L. // Acta Mater. 2006. V. 54. P. 1. https://www.doi.org/10.1016/j.actamat.2005.08.018
  15. Williamson G.K., Smallman R.E. // Philos. Mag. 1956. V. 1. № 1. P. 34. https://www.doi.org/10.1080/14786435608238074
  16. Самсонов Г.В. Свойства элементов. Справочник. Ч. 1. М.: Металлургия, 1976. 600 с.
  17. Zhang J., Gao N., Starink M.J. // Mater. Sci. Eng. A. 2011. V. 528. P. 2581. https://www.doi.org/10.1016/j.msea.2010.11.079
  18. Lee S.H., Inagaki H., Utsunomiya H., Saito Y., Sakai T. // Mater. Trans. 2003. V. 44. P. 1376. https://www.doi.org/10.2320/matertrans.44.1376
  19. Kamikawa N., Huang X., Tsuji N., Hansen N. // Acta Mater. 2003. V. 51. P. 4803. https://www.doi.org/10.1016/j.actamat.2009.05.017
  20. Hall E.O. // Proc. Phys. Soc. B. 1951. V. 64. P. 747. https://www.doi.org/10.1088/0370-1301/64/9/303
  21. Witkin D.B., Lavernia E.J. // Progr. Mater. Sci. 2006. V. 51. P. 1. https://www.doi.org/10.1016/j.pmatsci.2005.04.004
  22. Hansen N., Huang X. // Acta Mater. 1998. V. 46. № 5. P. 1827. https://www.doi.org/10.1016/s1359-6454%2897% 2900365-0
  23. Myhr O.R., Grong Ø., Andersen S.J. // Acta Mater. 2001. V. 49. P. 65. https://www.doi.org/10.1016/S1359-6454(00)00301-3
  24. Zhang P., Li S.X., Zhang Z.F. // Mater. Sci. Eng. A. 2011. V. 529. P. 62. https://www.doi.org/10.1016/j.msea.2011.08.061
  25. Latynina T.A., Mavlyutov A.M., Murashkin M.Yu, Valiev R.Z., Orlova T.S. // Philos. Mag. 2019. V. 99. № 19. P. 2424. https://www.doi.org/10.1080/14786435.2019. 1631501

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies