Modeling of the influence of field electron emission from a cathode with a thin insulating film on its sputtering in a gas discharge in a mixture of argon and mercury vapor

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A model of the low-current gas discharge in a mixture of argon and mercury vapor in the presence of a thin insulating film on the cathode surface is proposed. The model takes into account that in such a mixture a substantial contribution to the ionization of the working gas can come from the ionization of mercury atoms during their collisions with metastable excited argon atoms. In the discharge, positive charges accumulate on the film surface, creating an electric field in the film sufficient to cause field emission of electrons from the cathode metal substrate into the insulator. Such electrons are accelerated in the film by the field and can escape from it into the discharge volume. As a result, the effective yield of ion-electron emission from the cathode increases. The temperature dependences of discharge characteristics are calculated and it is shown that, due to a rapid decrease in the concentration of mercury vapor in the mixture with decreasing temperature, the electric field strength in the discharge gap and the discharge voltage increase. The presence of a thin insulating film on the cathode can result in an improvement in its emission characteristics and a significant reduction in the discharge voltage. This causes a decrease in the energies of the ions and atoms bombarding the cathode surface, and, consequently, in the intensity of cathode sputtering in the discharge.

Sobre autores

G. Bondarenko

HSE University

Autor responsável pela correspondência
Email: gbondarenko@hse.ru
Rússia, 101000, Moscow

V. Kristya

Bauman Moscow State Technical University

Email: kristya@bmstu.ru

Kaluga Branch

Rússia, 248000, Kaluga

D. Savichkin

Top Systems Ltd

Email: gbondarenko@hse.ru
Rússia, 127055, Moscow

M. Fisher

Bauman Moscow State Technical University, Kaluga Branch

Email: kristya@bmstu.ru
Rússia, 248000, Kaluga

Bibliografia

  1. Атаев А.Е. Зажигание ртутных разрядных источников излучения высокого давления. М.: Изд-во МЭИ, 1995. 168 c.
  2. Zissis G., Kitsinelis S. // J. Phys. D: Appl. Phys. 2009. V. 42. № 17. P. 173001. http://doi.org./10.1088/0022-3727/42/17/173001
  3. Langer R., Garner R., Paul I., Horn S., Tidecks R. // Eur. Phys. J. Appl. Phys. 2016. V. 76. № 1. P. 10802. http://doi.org./10.1051/epjap/2016160277
  4. Phelps A.V., Petrović Z.L. // Plasma Sources Sci. Tech. 1999. V. 8. № 3. Р. R21. http://doi.org./10.1088/0963-0252/8/3/201
  5. Lay B., Moss R.S., Rauf S., Kushner M.J. // Plasma Sources Sci. Technol. 2003. V. 12. № 1. P. 8. http://doi.org./10.1088/0963-0252/12/1/302
  6. Райзер Ю.П. Физика газового разряда. Долгопрудный: Интеллект, 2009. 736 с.
  7. Saifutdinov A.I. // Plasma Sources Sci. Tech. 2022. V. 31. № 9. P. 094008. http://doi.org./10.1088/1361-6595/ac89a7
  8. Sakai Y., Sawada S., Tagashira H. // J. Phys. D: Appl. Phys. 1989. V. 22. № 2. P. 282. http://doi.org./10.1088/0022-3727/22/2/007
  9. Petrov G.M., Giuliani J.L. // J. Appl. Phys. 2003. V. 94. № 1. P. 62. http://doi.org./10.1063/1.1576895
  10. Кристя В.И., Фишер М.Р. // Изв. РАН. Сер. физ. 2010. Т. 74. № 2. С. 298.
  11. Riedel M., Düsterhöft H., Nagel F. // Vacuum. 2001. V. 61. № 2. P. 169. http://doi.org./10.1016/S0042-207X(01)00112-9
  12. Гуторов К.М., Визгалов И.В., Маркина Е.А., Курнаев В.А. // Изв. РАН. Сер. физ. 2010. Т. 74. № 2. С. 208.
  13. Stamenković S.N., Marković V.Lj., Gocić S.R., Jovanović A.P. // Vacuum. 2013. V. 89. P. 62. http://doi.org./10.1016/j.vacuum.2012.09.010
  14. Bondarenko G.G., Fisher M.R., Kristya V.I. // Vacuum. 2016. V. 129. P. 188. http://doi.org./10.1016/j.vacuum.2016.01.008
  15. Hagelaar G.J.M., Kroesen G.M.W., Klein M.H. // J. Appl. Phys. 2000. V. 88. № 5. P. 2240. http://doi.org./10.1063/1.1287758
  16. Capdeville H., Pédoussat C., Pitchford L.C. // J. Appl. Phys. 2002. V. 91. № 3. P. 1026. http://doi.org./10.1063/1.1430891
  17. Ito T., Cappelli M.A. // Appl. Phys. Lett. 2007. V. 90. № 10. P. 101503. http://doi.org./10.1063/1.2711416
  18. Sukhomlinov V.S., Mustafaev A.S., Murillo O. // Phys. Plasmas. 2018. V. 25. № 1. P. 013513. http://doi.org./10.1063/1.5017309
  19. Кристя В.И., Савичкин Д.О., Фишер М.Р. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2016. № 4. С. 84. http://doi.org./10.7868/S0207352816040119
  20. Бондаренко Г.Г., Кристя В.И., Савичкин Д.О. // Изв. вузов. Физика. 2017. Т. 60. № 2. С. 129
  21. Bondarenko G.G., Kristya V.I., Savichkin D.O. // Vacuum. 2018. V. 149. P. 114. http://doi.org./10.1016/j.vacuum.2017.12.028
  22. Бондаренко Г.Г., Фишер М.Р., Мьо Ти Ха, Кристя В.И. // Изв. вузов. Физика. 2019. Т. 62. № 1. С. 72.
  23. Bondarenko G.G., Fisher M.R., Kristya V.I., Bondar-iev V. // High Temperature Material Proc. 2022. V. 26. № 1. P. 17. http://doi.org./10.1615/HighTempMatProc.2021041820
  24. Бондаренко Г.Г., Дубинина М.С., Фишер М.Р., Крис-тя В.И. // Изв. вузов. Физика. 2017. Т. 60. № 12. С. 48.
  25. Зыкова Е.В., Кучеренко Е.Т., Айвазов В.Я. // Радио- техника и электроника. 1979. Т. 24. № 7. С. 1464.
  26. Suzuki M., Sagawa M., Kusunoki T., Nishimura E., Ike-da M., Tsuji K. // IEEE Trans. ED. 2012. V. 59. P. 2256. http://doi.org./10.1109/TED.2012.2197625
  27. Уэймаус Д. Газоразрядные лампы. М.: Энергия, 1977. 344 с.
  28. Савичкин Д.О., Кристя В.И. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2019. № 2. С. 107. http://doi.org./10.1134/S0207352819020112
  29. Распыление твердых тел ионной бомбардировкой. Вып. 1 / Ред. Бериш Р. М.: Мир, 1984. 336 c.
  30. Распыление твердых тел ионной бомбардировкой. Вып. 2. / Ред. Бериш Р. М.: Мир, 1986. 488 c.
  31. Hine K., Yoshimura S., Ikuse K., Kiuchi M., Hashimo-to J., Terauchi M., Nishitani M., Hamaguchi S. // Jpn. J. Appl. Phys. 2007. V. 46. № 12L. P. L1132. http://doi.org./10.1143/JJAP.46.L1132
  32. Yoshimura S., Hine K., Kiuchi M., Hashimoto J., Terauchi M., Honda Y., Nishitani M., Hamaguchi S. // Jpn. J. Appl. Phys. 2012. V. 51. № 8S1. Р. 08HB02. http://doi.org./10.1143/JJAP.51.08HB02

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Temperature dependence of the effective coefficient of ion-electron emission of the cathode (a), the ignition voltage of the discharge (b) and the ratio of current densities of mercury and argon ions at the cathode (c). Solid lines correspond to the cathode with a film, and dashed lines – without a film.

Baixar (207KB)
3. Fig. 2. Energy distributions at the cathode of fluxes of argon (Ar+) and mercury (Hg+) ions, as well as fast argon atoms arising from elastic scattering of argon and mercury ions on slow argon atoms (Ar1) and (Ar2) in the absence of a dielectric film (a) on the cathode and in its presence (b).

Baixar (215KB)
4. Fig. 3. Temperature dependence of the effective sputtering coefficients of the aluminum cathode with mercury ions (Hg+) and fast argon atoms arising from the elastic scattering of mercury ions on argon atoms (Ar2). Solid lines correspond to a cathode with a film, and dashed lines correspond to a cathode without a film.

Baixar (103KB)
5. Fig. 4. Temperature dependence of the flux density of atoms atomized from the cathode. The solid line corresponds to a cathode with a film, and the dashed line corresponds to a non–film cathode.

Baixar (77KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies