Model of Structural Ordering of Vacancies and Formation of a Family of Ternary Compounds in I–III–VI Systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A characteristic feature of AIBIIICVI ternary chalcogenide compounds, which has a significant effect on the possibility of controlling the functional properties of materials based on them, is a strong tendency to stoichiometry deviation. The existence of ordered vacancy compounds in nanocrystals of the AIBIIICVI system was substantiated using the triangulation method (N.A. Goryunova’s method for predicting the composition of diamond-like semiconductors). Taking into account the assumption of the formation of electrically neutral defect complexes consisting of a vacancy in the position of the group I atom \(2[0]_{{\text{I}}}^{{ - 1}}\) and a doubly ionized antistructural defect \({\text{In}}_{{\text{I}}}^{{ + 2}}\) vacancies are presented as a pseudo-element of the “zero group”, while the system is considered from the point of view of the concentration tetrahedron so that the triangulation operations are transformed into tetrahedration operations. In the presence of such a “virtual” element, instead of a single stoichiometric composition in the AIBIIICVI system, a set of ternary compounds with an ordered content of vacancies known from the literature is determined, corresponding to semiconductors with four bonds per individual atom.

Sobre autores

D. Mazing

St. Petersburg Electrotechnical University

Autor responsável pela correspondência
Email: dmazing@yandex.ru
Russia, 197022, St. Petersburg

О. Aleksandrova

St. Petersburg Electrotechnical University

Autor responsável pela correspondência
Email: oaaleksandrova@gmail.com
Russia, 197022, St. Petersburg

V. Moshnikov

St. Petersburg Electrotechnical University

Autor responsável pela correspondência
Email: vamoshnikov@mail.ru
Russia, 197022, St. Petersburg

Bibliografia

  1. Kagan C.R., Lifshitz E., Sargent E.H., Talapin D.V. // Science. 2016. V. 353. № 6302. P. 885. https://www.doi.org/10.1126/science.aac5523
  2. Choi M.K., Yang J., Hyeon T., Kim D.H. // npj Flexible Electronics. 2018. V. 2. P. 10. https://www.doi.org/10.1038/s41528-018-0023-3
  3. García de Arquer F.P., Armin A., Meredith P., Sargent E.H. // Nat. Rev. Mater. 2017. V. 2. P. 16100. https://www.doi.org/10.1038/natrevmats.2016.100
  4. Pelaz B., Alexiou C., Alvarez-Puebla R.A., Alves F., Andrews A.M., Ashraf S., Balogh L.P., Ballerini L., Bestetti A., Brendel C. et al. // ACS Nano. 2017. V. 11. P. 2313. https://www.doi.org/10.1021/acsnano.6b06040
  5. Sharan A., Sabino F.P., Janotti A., Gaillard N., Ogitsu T., Varley J.B. // J. Appl. Phys. 2020. V. 127. № 6. P. 065303. https://www.doi.org/10.1063/1.5140736
  6. Du J., Singh R., Fedin I., Fuhr A.S., Klimov V.I. // Nature Energy. 2020. V. 5. P. 409. https://www.doi.org/10.1038/s41560-020-0617-6
  7. Regmi G., Ashok A., Chawla P., Semalti P., Velumani S., Sharma S.N., Castaneda H. // J. Mater. Sci.: Mater. Electronics. 2020. V. 31. № 10. P. 7286. https://www.doi.org/10.1007/s10854-020-03338-2
  8. Aldakov D., Lefrançois A., Reiss P. // J. Mater. Chem. C. 2013. V. 1. № 24. P. 3756. https://www.doi.org/10.1039/C3TC30273C
  9. Mazing D.S., Karmanov A.A., Matyushkin L.B., Aleksandrova O.A., Pronin I.A., Moshnikov V.A. // Glass Phys. Chem. 2016. V. 42. P. 497. https://www.doi.org/10.1134/S1087659616050114
  10. Mazing D.S., Korepanov O.A., Aleksandrova O.A., Moshnikov V.A. // Opt. Spectrosc. 2018. V. 125. P. 773. https://www.doi.org/10.1134/S0030400X1811019X
  11. Korepanov O.A., Mazing D.S., Aleksandrova O.A., Moshnikov V.A., Komolov A.S., Lazneva E.F., Kirilenko D.A. // Phys. Solid State. 2019. V. 61. P. 2325. https://www.doi.org/10.1134/S1063783419120217
  12. Ghosh S., Mandal S., Mukherjee S., De C.K., Samanta T., Mandal M., Roy D., Mandal P.K. // J. Phys. Chem. Lett. 2021. V. 12. № 5. P. 1426. https://www.doi.org/10.1021/acs.jpclett.0c03519
  13. Yarema O., Yarema M., Wood V. // Chem. Mater. 2018. V. 30. № 5. P. 1446. https://www.doi.org/10.1021/acs.chemmater.7b04710
  14. Berends A.C., Mangnus M.J., Xia C., Rabouw F.T., de Mello Donega C. // J. Phys. Chem. Lett. 2019. V. 10. № 7. P. 16006. https://www.doi.org/10.1021/acs.jpclett.8b03653
  15. Leach A.D., Macdonald J.E. // J. Phys. Chem. Lett. 2016. V. 7. № 3. P. 572. https://www.doi.org/10.1021/acs.jpclett.5b02211
  16. Горюнова Н.А. Сложные алмазоподобные полупроводники. М.: Сов. радио, 1968.
  17. Coughlan C., Ibáñez M., Dobrozhan O., Singh A., Cabot A., Ryan K.M. // Chem. Rev. 2017. V. 117. № 9. P. 5865. https://www.doi.org/10.1021/acs.chemrev.6b00376
  18. Jeong S., Yoon H.C., Han N.S., Oh J.H., Park S.M., Min B., Do Y.R., Song J.K. // J. Phys. Chem. C. 2017. V. 121. № 5. P. 3149. https://www.doi.org/10.1021/acs.jpcc.7b00043
  19. Merino J.M., Mahanty S., Leon M., Diaz R., Rueda F., De Vidales J.M. // Thin Solid Films. 2000. V. 361. P. 70. https://www.doi.org/10.1016/S0040-6090(99)00771-3
  20. Yarema O., Yarema M., Bozyigit D., Lin W.M., Wood V. // ACS Nano. 2015. V. 9. № 11. P. 11134. https://www.doi.org/10.1021/acsnano.5b04636
  21. Zhang S.B., Wei S.H., Zunger A. // Phys. Rev. Lett. 1997. V. 78. P. 4059. https://www.doi.org/10.1103/PhysRevLett.78.4059
  22. Zhang S.B., Wei Su-Huai, Zunger A., Katayama-Yoshida H. // Phys. Rev. B. 1998. V. 57. P. 9642. https://www.doi.org/10.1103/PhysRevB.57.9642
  23. Matyushkin L.B., Moshnikov V.A. // Semiconductors. 2017. V. 51. P. 1337. https://www.doi.org/10.1134/S106378261710013X
  24. Aleshin A.N., Shcherbakov I.P., Kirilenko D.A., Matyushkin L.B., Moshnikov V.A. // Phys. Solid State. 2019. V. 61. P. 256. https://www.doi.org/10.1134/S1063783419020021
  25. Omata T., Nose K., Otsuka-Yao-Matsuo S. // J. Appl. Phys. 2009. V. 105. № 7. P. 073106. https://www.doi.org/10.1063/1.3103768

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (330KB)
3.

Baixar (157KB)

Declaração de direitos autorais © Д.С. Мазинг, О.А. Александрова, В.А. Мошников, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies