The Influence of Ta Coating on the Crystallization of Deformed Fe78Si13B9 and Al87Ni8Gd5 Amorphous Alloys

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of the free volume on the crystallization processes of Fe78Si13B9 and Al87Ni8Gd5 amorphous alloys was studied by X-ray diffraction. To study the influence of the free volume, two methods of amorphous alloys deformation were carried out: ultrasonic treatment and multiple rolling. After deformation, a protective coating was applied to the amorphous alloys. It is shown that the deposition of a protective coating with a higher vacancy formation energy compared to the vacancy formation energy in the amorphous alloys under study is an effective way to maintain the free volume in the amorphous phase, since it is thermodynamically unfavorable for the free volume to migrate from the amorphous phase into the coating material. Experimental data indicate that the preliminary deformation of amorphous alloys leads to an increase in the amount of free volume. An increase in the amount of free volume and its maintenance by protective coating contributes to a significant crystallization acceleration of Fe78Si13B9 and Al87Ni8Gd5 amorphous alloys. The results obtained expand the existing ideas about the processes of crystallization of amorphous alloys and indicate the possibility of developing materials with different structural characteristics and, consequently, with different physicochemical properties.

Sobre autores

V. Chirkova

Institute of Solid State Physics RAS

Autor responsável pela correspondência
Email: valyffkin@issp.ac.ru
Russia, 142432, Chernogolovka

G. Abrosimova

Institute of Solid State Physics RAS

Autor responsável pela correspondência
Email: gea@issp.ac.ru
Russia, 142432, Chernogolovka

E. Pershina

Institute of Solid State Physics RAS

Email: gea@issp.ac.ru
Russia, 142432, Chernogolovka

N. Volkov

Institute of Solid State Physics RAS

Email: gea@issp.ac.ru
Russia, 142432, Chernogolovka

A. Aronin

Institute of Solid State Physics RAS

Email: gea@issp.ac.ru
Russia, 142432, Chernogolovka

Bibliografia

  1. Willens R.H., Klement W., Duwez P. // J. Appl. Phys. 1960. V. 31. № 6. P. 1136. https://www.doi.org/10.1063/1.1735777
  2. Morón C., Cabrera C., Morón A., Garcia A., González M. // Sens. 2015. V. 15. № 11. P. 28 340. https://www.doi.org/10.3390/s151128340
  3. Herzer G. // Acta Mater. 2013. V. 61. № 3. P. 718. https://www.doi.org/10.1016/j.actamat.2012.10.040
  4. Kim Y.H., Inoue A., Masumoto T. // Mater. Trans. JIM 1991. V. 32. № 4. P. 331. https://www.doi.org/10.2320/matertrans1989.32.331
  5. Cheng Y.Q., Ma E. // Prog. Mater. Sci. 2011. V. 56. № 4. P. 379. https://www.doi.org/10.1016/j.pmatsci.2010.12.002
  6. Cohen M.H., Turnbull D. // J. Chem. Phys. 1959. V. 31. № 5. P. 1164. https://www.doi.org/10.1063/1.1730566
  7. Turnbull D., Cohen M.H. // J. Chem. Phys. 1970. V. 52. № 6. P. 30308. https://www.doi.org/10.1063/1.1673434
  8. Ramachandrarao P., Cantor B., Cahn R.W. // J. Non-Cryst. Solids. 1977. V. 24. № 1. P. 109. https://www.doi.org/10.1016/0022-3093(77)90065-5
  9. Ramachandrarao P., Cantor B., Cahn R.W. // J. Mater. Sci. 1977. V. 12. № 12. P. 2488. https://www.doi.org/10.1007/BF00553936
  10. Masumoto T., Maddin R. // Acta Metall. 1971. V. 19. № 7. P. 725. https://www.doi.org/10.1016/0001-6160(71)90028-9
  11. Polk D.E., Turnbull D. // Acta Metall. 1972. V. 20. № 4. P. 493. https://www.doi.org/10.1016/0001-6160(72)90004-1
  12. Spaepen F. // Acta Metall. 1977. V. 25. № 4. P. 407. https://www.doi.org/10.1016/0001-6160(77)90232-2
  13. Boucharat N., Hebert R., Rösner H., Valiev R., Wilde G. // Scr. Mater. 2005. V. 53. № 7. P. 823. https://www.doi.org/10.1016/J.SCRIPTAMAT.2005.06.004
  14. Park J.S., Lim H.K., Kim J.-H., Chang H.J., Kim W.T., Kim D.H., Fleury E. // J. Non-Cryst. Solids. 2005. V. 351. № 24–26. P. 2142. https://www.doi.org/10.1016/J.JNONCRYSOL.2005.04.070
  15. Hebert R.J., Perepezko J.H., Rösner H., Wilde G. // Beilstein J. Nanotechnol. 2016. V. 7. P. 1428. http://dx.doi.org/10.3762/bjnano.7.134
  16. Ma G.Z., Song K.K., Sun B.A., Yan Z.J., Kühn U., Chen D., Eckert J. // J. Mater. Sci. 2013. V. 48. № 19. P. 6825. https://www.doi.org/10.1007/s10853-013-7488-1
  17. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater. 2017. V. 140. P. 206. https://www.doi.org/10.1016/j.actamat.2017.08.032
  18. Schmidt V., Rösner H., Peterlechner M., Wilde G., Voyles P.M. // Phys. Rev. Lett. 2015. V. 115. https://www.doi.org/10.1103/PhysRevLett.115.035501
  19. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://www.doi.org/10.1016/j.mechmat.2017.07.007
  20. Zhang T., Men H. // J. Alloys Compd. 2007. V. 434–435. P. 10. https://www.doi.org/10.1016/j.jallcom.2006.08.149
  21. Rösner H., Peterlechler M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://www.doi.org/10.1016/j.ultramic.2014.03.006
  22. Абросимова Г., Аронин А., Баркалов О., Матвеев Д., Рыбченко О., Маслов В., Ткач В. // ФТТ. 2011. Т. 53. № 2. С. 215. https://www.doi.org/10.1134/S1063783411020028
  23. Wilde G., Rösner H. // Appl. Phys. Lett. 2011. V. 98. № 25. P. 251904. https://www.doi.org/10.1063/1.3602315
  24. Gunderov D.V., Churakova A.A., Boltynjuk E.V., Ubyivovk E.V., Astanin V.V., Asfandiyarov R.N., Valiev R.Z., Xioang W., Wang J.T. // J. Alloys Compd. 2019. V. 800. P. 58. https://www.doi.org/10.1016/j.jallcom.2019.06.043
  25. Постнова Е.Ю., Абросимова Г.Е., Аронин А.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 11. С. 5. https://www.doi.org/10.31857/S1028096021110169
  26. Абросимова Г.Е., Аронин А.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 5. С. 91. https://www.doi.org/10.7868/S0207352818050116
  27. Ma J., Yang C., Liu X., Shang B., He Q., Li F., Wang T., Wei D., Liang X., Wu X., Wang Y., Gong F., Guan P., Wang W., Yang Y. // Sci. Adv. 2019. V. 5. № 11. https://www.doi.org/10.1126/sciadv.aax7256
  28. Ma J., Liang X., Wu X., Liu Z., Gong F. // Sci. Rep. 2015. V. 5. P. 17844. https://www.doi.org/10.1038/srep17844
  29. Lou Y., Liu X., Yang X., Ge Y., Zhao D., Wang H., Zhang L.-C., Liu Z. // Intermetallics. 2020. V. 118. 106 687. https://www.doi.org/10.101-6/j.intermet.2019.106687
  30. Lou Y., Xv S., Liu Z., Ma J. // Materials. 2020. V. 13 № 19. https://www.doi.org/10.3390/ma13194397
  31. Li N., Xu X., Zheng Zh., Liu L. // Acta Mater. 2014. V. 65. P. 400. https://www.doi.org/10.1016/j.actamat.2013.11.009
  32. Chen Z.Q., Huang L., Wang F., Huang P., Lu T.J., Xu K.W. // Mater. Des. 2016. V. 109. P. 179. https://www.doi.org/10.1016/j.matdes.2016.07.069
  33. Abrosimova G., Aronin A., Matveev D., Pershina E. // Mater. Lett. 2013. V. 97. P. 15. https://doi.org/10.1016/j.matlet.2013.01.092
  34. Inoue A., Ochiai T., Horio Y., Masumoto T. // Mater. Sci. Eng. A. 1994. V. 179–180. P. 649. https://doi.org/10.1016/0921-5093(94)90286-0
  35. Абросимова Г.Е., Шмытько И.М. // Зав. лабор. диагностика материалов. 2018. Т. 84. № 6. С. 34. https://www.doi.org/10.26896/1028-6861-2018-84-6-34-37
  36. Русаков А.А. Рентгенография металлов. М.: Атомиздат, 1977. 480 с.
  37. PCPDFWIN. v 1.30 (1997) JCPDS-International Centre for Difraction Data. https://www.icdd.com
  38. Atmani H., Grognet S., Teillet S. // J. Non-Cryst. 2001. V. 290. № 2−3. P. 194. https://www.doi.org/10.1016/S0022-3093(01)00737-2
  39. Abrosimova G., Aronin A., Budchenko A. // Mater. Lett. 2015. V. 139. P. 194. https://www.doi.org/10.1016/j.matlet.2014.10.076
  40. Скрышевский А.Ф. Структурный анализ жидкостей и аморфных тел. М.: Высшая школа, 1980. 328 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (146KB)
3.

Baixar (68KB)
4.

Baixar (77KB)
5.

Baixar (216KB)

Declaração de direitos autorais © В.В. Чиркова, Г.Е. Абросимова, Е.А. Першина, Н.А. Волков, А.С. Аронин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies