Some Methods for Improving the Quality of Magnetic Force Microscopy Images

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Some factors affecting the quality of magnetic force microscopy images are considered. The main attention is paid to the deterioration of the quality of scans caused by contamination of the probe. It is shown that contamination can occur both during scanning and during storage of the probe. These two different sources of contamination show up differently in images, and different methods must be used to eliminate them. A likely source of probe contamination is the gel used in probe storage and shipping boxes. The magnetic coating of cantilevers can be a catalyst for a chemical reaction leading to the formation of liquid hydrocarbons. The liquid contaminants act as probe functionalizers. When the probe is moved away from the surface, mechanical bonds can be maintained between them due to the molecular chains adsorbed on the probe. Depending on the degree of pollution, the presence of such a connection can lead either to the appearance of stripes in the image of the magnetic structure, or to the complete disappearance of the magnetic contrast. A modification of the standard procedure for magnetic measurements, i.e., the introduction of an additional bounce into the two-pass technique (lift mode), makes it possible to completely eliminate the parasitic influence of this effect.

Sobre autores

A. Temiryazev

Kotel’nikov Institute of Radioengineering and Electronics of RAS, Fryazino Branch

Autor responsável pela correspondência
Email: temiryazev@gmail.com
141190 Russia, Fryazino

M. Temiryazeva

Kotel’nikov Institute of Radioengineering and Electronics of RAS, Fryazino Branch

Email: temiryazev@gmail.com
141190 Russia, Fryazino

Bibliografia

  1. Martin Y., Wickramasinghe H.K. // Appl. Phys. Lett. 1987. V. 50. P. 1455. https://www.doi.org/10.1063/1.97800
  2. Sáenz J.J., García N., Grütter P., Meyer E., Heinzelmann H., Wiesendanger R., Rosenthaler L., Hidber H.R., Güntherodt H.-J. // J. Appl. Phys. 1987. V. 62. P. 4293. https://www.doi.org/10.1063/1.339105
  3. Magnetic Microscopy of Nanostructures // Ed. Hopster H., Oepen H.P. Springer-Verlag Berlin Heidelberg, 2005.
  4. Vokoun D., Samal S., Stachiv I. // Magnetochemistry. 2022. V. 8. P. 42. https://doi.org/10.3390/magnetochemistry8040042
  5. Kazakova O., Puttock R., Barton C., Corte-Leon H., Jaafar M., Neu V., Asenjo A. // J. Appl. Phys. 2019. V. 125. P. 060901. https://www.doi.org/10.1063/1.5050712
  6. Binnig G., Quate C.F., Gerber C. // Phys. Rev. Lett. 1986. V. 56. P. 930. https://www.doi.org/10.1103/physrevlett.56.930
  7. Noncontact Atomic Force Microscopy // Ed. Morita S., et al. Springer Verlag: Berlin, Heidelberg, New York, 2002. https://doi.org/10.1007/978-3-642-56019-4
  8. Garcia R. Amplitude Modulation Atomic Force Microscopy. WileyVCH: Weinheim, 2010. https://www.doi.org/10.1002/9783527632183
  9. Magneto-Optics // Ed. Sugano S., et al. Springer-Verlag Berlin Heidelberg, 2000.
  10. Kimel A. et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 463003. https://doi.org/10.1088/1361-6463/ac8da0
  11. Chapman J.N. // J. Phys. D.: Appl. Phys. 1984. V. 17. P. 623. https://www.doi.org/10.1088/0022-3727/17/4/003
  12. Jin T., Lingyao K., Weiwei W., Haifeng D., Mingliang T. // Chinese Phys. B. 2019. V. 28. № 8. P. 087503. https://www.doi.org/10.1088/1674-1056/28/8/087503
  13. Zhang X., Nguyen K., Turgut E., Chen Z., Chang C., Shao Y., Fuchs G., Muller D. // Microscopy Microanalysis. 2022. V. 28. Iss. S1. P. 1698. https://www.doi.org/10.1017/S1431927622006742
  14. Mamin H.J., Rugar D., Stern J.E., Fontana R.E., Kasiraj P. // Appl. Phys. Lett. 1989. V. 55. P. 318. https://www.doi.org/10.1063/1.101898
  15. Zhao T., Hou C., Fujiwara H., Cho H., Harrell J.W., Khapikov A. // J. Appl. Phys. 2000. V. 87. P. 6484. https://www.doi.org/10.1063/1.372745
  16. Grütter P., Liu Y., LeBlanc P., Dürig U. // Appl. Phys. Lett. 1997. V. 71. P. 279. https://www.doi.org/10.1063/1.119519
  17. Liu Y., Grütter P. // J. Appl. Phys. 1998. V. 83. P. 7333. https://www.doi.org/10.1063/1.367825
  18. Темирязев А.Г., Саунин С.А., Сизов В.Е., Темирязева М.П. // Известия РАН. Серия физическая. 2014. Т. 78. № 1. С. 78. https://www.doi.org/10.7868/S0367676514010219
  19. Gartside J.C., Burn D.M., Cohen L.F., Branford W.R. // Sci. Rep. 2016. V. 6. P. 32864. https://www.doi.org/10.1038/srep32864
  20. Здоровейщев А.В., Дорохин М.В., Вихрова О.В., Демина П.Б., Кудрин А.В., Темирязев А.Г., Темирязева М.П. // Физика твердого тела. 2016. Т. 58. № 11. С. 2186. https://www.doi.org/10.21883/ftt.2016.11.43737.8k
  21. Темирязев А.Г., Темирязева М.П., Здоровейщев А.В., Вихрова О.В., Дорохин М.В., Демина П.Б., Кудрин А.В. // Физика твердого тела. 2018. Т. 60. № 11. С. 2158. https://www.doi.org/10.21883/FTТ.2018.11.46657.12NN
  22. Yu J., Ahner J., Weller D. // J. Appl. Phys. 2004. V. 96. P. 494. https://www.doi.org/10.1063/1.1757029
  23. Martínez-Martín D., Jaafar M., Pérez R., Gómez-Herrero J., Asenjo A. // Phys. Rev. Lett. 2010. V. 105. P. 257203. https://www.doi.org/10.1103/PhysRevLett.105.257203
  24. Li L.H., Chen Y. // J. Appl. Phys. 2014. V. 116. P. 213904. https://www.doi.org/10.1063/1.4903040
  25. Jaafar M., Iglesias-Freire O., Serrano-Ramón L., Ibarra M.R., de Teresa J.M., Asenjo A. // Beilstein J. Nanotechnol. 2011. V. 2. P. 552. https://www.doi.org/10.3762/bjnano.2.59
  26. Angeloni L., Passeri D., Reggente M., Mantovani D., Rossi M. // Sci. Rep. 2016. V. 6. P. 26293. https://www.doi.org/10.1038/srep26293
  27. Krivcov A., Junkers T., Möbius H. //. J. Phys. Commun. 2018. V. 2. P. 075019. https://www.doi.org/10.1088/2399-6528/aad3a4
  28. Fuhrmann M., Musyanovych A., Thoelen R., von Bomhard S., Möbius H. // Nanomaterials 2020. V. 10. P. 2486. https://www.doi.org/10.3390/nano10122486
  29. Темирязев А.Г., Борисов В.И., Саунин С.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2014. № 7. С. 93. https://www.doi.org/10.7868/S0207352814050163
  30. Temiryazev A.G., Krayev A.V., Temiryazeva M.P. // Beilstein J. Nanotechnology. 2021. V. 12. P. 1226. https://www.doi.org/10.3762/bjnano.12.90
  31. Sirghi L., Kylián O., Gilliland D., Ceccone G., Rossi F. // J. Phys. Chem. B. 2006. V. 110. № 51. P. 25975. https://www.doi.org/10.1021/jp063327g
  32. Ievlev A.V., Brown C., Burch M.J., Agar J.C., Velarde G.A., Martin L.W., Maksymovych P., Kalinin S.V., Ovchinnikova O.S. // Anal. Chem. 2018. V. 90. № 5. P. 3475. https://www.doi.org/10.1021/acs.analchem.7b05225
  33. Мордкович В., Синева Л., Кульчаковская Е., Асалиева Е. // Катализ в промышленности. 2015. Т. 15. № 5. С. 23. https://www.doi.org/10.18412/1816-0387-2015-5-23-45

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (111KB)
3.

Baixar (266KB)
4.

Baixar (957KB)
5.

Baixar (112KB)
6.

Baixar (1MB)
7.

Baixar (793KB)

Declaração de direitos autorais © А.Г. Темирязев, М.П. Темирязева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies