Intense Laser Sources of Gamma Radiation and Neutrons Based on High-Current Beams of Super-Ponderomotive Electrons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Intense beams of photons and neutrons in the MeV energy range are effective tools in many areas of research, such as diagnostics of matter in extreme states, nuclear physics and materials science, as well as in medical and biophysical applications. A concept is presented for creating efficient sources of γ-radiation and neutrons, based on the generation of relativistic electrons in the direct laser acceleration mode during the interaction between a laser pulse with an intensity of 1019 W/cm2 and extended plasma with a density close to critical.

Sobre autores

N. Andreev

Joint Institute for High Temperatures RAS; Moscow Institute of Physics and Technology (State University)

Autor responsável pela correspondência
Email: andreev@ras.ru
Russia, 125412, Moscow; Russia, 141701, Dolgoprudny

I. Umarov

Joint Institute for High Temperatures RAS; Moscow Institute of Physics and Technology (State University)

Email: andreev@ras.ru
Russia, 125412, Moscow; Russia, 141701, Dolgoprudny

V. Popov

Joint Institute for High Temperatures RAS; Moscow Institute of Physics and Technology (State University)

Email: andreev@ras.ru
Russia, 125412, Moscow; Russia, 141701, Dolgoprudny

Bibliografia

  1. Wang T., Ribeyre X., Gong Z., Jansen O., d’Humières E., Stutman D., Toncian T., Arefiev A. // Phys. Rev. Appl. 2020. V. 13. № 5. P. 054024. https://doi.org/10.1103/PhysRevApplied.13.054024
  2. Norreys P.A., Santala M., Clark E. et al. // Phys. Plasmas. 1999. V. 6. P. 2150. https://doi.org/10.1063/1.873466
  3. Hatchett S.P., Brown C.G., Cowan T.E. et al. // Phys. Plasmas. 2000. V. 7. № 5. P. 2076. https://doi.org/10.1063/1.874030
  4. Gu Y.-J., Jirka M., Klimo O., Weber S. // Matt. Radiat. Extremes. 2019. V. 4. P. 064403. https://doi.org/10.1063/1.5098978
  5. Pomerantz I., McCary E., Meadows A.R., Arefiev A., Bernstein A.C., Chester C., Cortez J., Donovan M.E., Dyer G., Gaul E.W., Hamilton D., Kuk D., Lestrade A.C., Wang C., Ditmire T., Hegelich B.M. // Phys. Rev. Lett. 2014. V. 113. № 18. P. 184801. https://doi.org/10.1103/PhysRevLett.113.184801
  6. Günther M.M., Rosmej O.N., Tavana P., Gyrdymov M., Skobliakov A., Kantsyrev A., Zähter S., Borisenko N.G., Pukhov A., Andreev N.E. // Nature Commun. 2022. V. 13. № 1. P. 170. https://doi.org/10.1038/s41467-021-27694-7
  7. Недорезов В.Г., Рыкованов С.Г., Савельев А.Б. // Успехи физических наук. 2021. Т. 191. № 12. С. 1281. https://doi.org/10.3367/UFNr.2021.03.038960
  8. Ravasio A., Koenig M., Le Pape S. et al. // Phys. Plasmas. 2008. V. 15. № 6. P. 060701. https://doi.org/10.1063/1.2928156
  9. Li K., Borm B., Hug F., Khaghani D., Löher B., Savran D., Tahir N.A., Neumayer P. // Laser and Particle Beams. 2014. V. 32. № 4. P. 631. https://doi.org/10.1017/S0263034614000652
  10. Negoita F., Roth M., Thirolf P.G. et al. // Roman. Rep. Phys. 2016. V. 68. P. S37.
  11. Habs D., Köster U. // Appl. Phys. B. 2010. V. 103. № 2. P. 501. https://doi.org/10.1007/s00340-010-4278-1
  12. Ma Z., Lan H., Liu W., Wu S., Xu Y., Zhu Z., Luo W. // Matt. Radiat. Extremes. 2019. V. 4. № 6. P. 064401. https://doi.org/10.1063/1.5100925
  13. Willingale L., Nilson P.M., Thomas A.G.R., Bulanov S.S., Maksimchuk A., Nazarov W., Sangster T.C., Stoeckl C., Krushelnick K. // Phys. Plasmas. 2011. V. 18. № 5. P. 056706. https://doi.org/10.1063/1.3563438
  14. Willingale L., Thomas A.G.R., Nilson P.M., Chen H., Cobble J., Craxton R.S., Maksimchuk A., Norreys P.A., Sangster T.C., Scott R.H.H., Stoeckl C., Zulick C., Krushelnick K. // New J. Phys. 2013. V. 15. № 2. P. 025023. https://doi.org/10.1088/1367-2630/15/2/025023
  15. Toncian T., Wang C., McCary E. et al. // Matt. Radiat. Extremes. 2016. V. 1. № 1. P. 82. https://doi.org/10.1016/j.mre.2015.11.001
  16. Pukhov A., Sheng Z.-M., Meyer-ter-Vehn J. // Phys. Plasmas. 1999. V. 6. № 7. P. 2847. https://doi.org/10.1063/1.873242
  17. Willingale L., Arefiev A.V., Williams G.J., Chen H., Dollar F., Hazi A. U., Maksimchuk A., Manuel M. J.-E., Marley E., Nazarov W., Zhao T. Z., Zulick C. // New J. Phys. 2018. V. 20. № 9. P. 093024. https://doi.org/10.1088/1367-2630/aae034
  18. Arefiev A.V., Khudik V.N., Robinson A.P.L., Shvets G., Willingale L., Schollmeier M. // Phys. Plasmas. 2016. V. 23. № 5. P. 056704. https://doi.org/10.1063/1.4946024
  19. Khudik V., Arefiev A., Zhang X., Shvets G. // Phys. Plasmas. 2016. V. 23. P. 103108. https://doi.org/10.1063/1.4964901
  20. Pugachev L., Andreev N., Levashov P., Rosmej O. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 829. P. 88. https://doi.org/10.1016/j.nima.2016.02.053
  21. Rosmej O.N., Andreev N.E., Zaehter S., Zahn N., Christ P., Borm B., Radon T., Sokolov A., Pugachev L.P., Khaghani D., Horst F., Borisenko N.G., Sklizkov G., Pimenov V.G. // New J. Phys. 2019. V. 21. № 4. P. 043044. https://doi.org/10.1088/1367-2630/ab1047
  22. Rosmej O.N., Gyrdymov M., Günther M.M., Andreev N.E., Tavana P., Neumayer P., Zähter S., Zahn N., Popov V.S., Borisenko N.G., Kantsyrev A., Skobliakov A., Panyushkin V., Bogdanov A., Consoli F., Shen X.F., Pukhov A. // Plasma Phys. Controlled Fusion. 2020. V. 62. № 11. P. 115024. https://doi.org/10.1088/1361-6587/abb24e
  23. Andreev N., Popov V., Rosmej O., Kuzmin A., Shaykin A., Khazanov E., Kotov A., Borisenko N., Starodubtsev M., Soloviev A. // Quantum Electronics. 2021. V. 51. № 11. P. 1019. https://doi.org/10.1070/qel17648
  24. Rosmej O.N., Suslov N., Martsovenko D. et al. // Plasma Phys. Controlled Fusion. 2015. V. 57. № 9. P. 094001.
  25. Esarey E., Schroeder C.B., Leemans W.P. // Rev. Mod. Phys. 2009. V. 81. № 3. P. 1229. https://doi.org/10.1103/RevModPhys. 81.1229
  26. Gonsalves A.J., Nakamura K., Daniels J. et al. // Phys. Rev. Lett. 2019. V. 122. № 8. P. 084801. https://doi.org/10.1103/PhysRevLett.122.084801
  27. Pukhov A. // J. Plasma Phys. 1999. V. 61. № 3. P. 425. https://doi.org/10.1017/S0022377899007515
  28. Borisenko N.G., Akimova I.V., Gromov A.I., Khalenkov A.M., Merkuliev Y.A., Kondrashov V.N., Limpouch J., Kuba J., Krousky E., Masek K., Nazarov W., Pimenov V.G. // Fusion Sci. Technol. 2006. V. 49. № 4. P. 676. https://doi.org/10.13182/FST06-A1185
  29. Agostinelli S., Allison J., Amako K. et al. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 506. № 3. P. 250. https://doi.org/10.1016/S01689002(03)01368-8
  30. Stoyer M.A., Sangster T.C., Henry E.A., Cable M.D., Cowan T.E., Hatchett S.P., Key M., Moran M.J., Pennington D.M., Perry M.D., Phillips T.W., Singh M.S., Snavely R.A., Tabak M., Wilks S.C. // Rev. Sci. Instrum. 2001. V. 72. № 1. P. 767. https://doi.org/10.1063/1.1319355
  31. Spicer B.M. // Advances in Nuclear Physics. V. 2. N.Y.: Springer, 1969. P. 1. https://doi.org/10.1007/978-1-4684-8343-7_1
  32. Zerkin V., Pritychenko B. // Nucl. Instrum. Methods Phys. Res. A. 2018. V. 888. P. 31. https://doi.org/10.1016/j.nima.2018.01.045
  33. Koning A.J., Hilaire S., Duijvestijn M.C. // AIP Conf. Proc. 2005. V. 769. P. 1154.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (437KB)
3.

Baixar (99KB)
4.

Baixar (379KB)
5.

Baixar (124KB)
6.

Baixar (125KB)
7.

Baixar (122KB)

Declaração de direitos autorais © Н.Е. Андреев, И.Р. Умаров, В.С. Попов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies