Resonant Neutron Reflectometry on a Compact Neutron Source

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper presents an approach to solving the phase problem in neutron reflectometry (including polarized neutron reflectometry) based on the effect of resonant interaction of nuclei of gadolinium isotopes 155Gd and 157Gd with thermal neutrons. This effect is used to implement the reference layer method, which allows, based on the results of three experiments, to calculate the complex reflection coefficient of the sample under study. Knowledge of the complex reflection coefficient makes it possible to model-independent analysis of the interaction potential, both nuclear and magnetic. The main application of this approach is the study of the structure of layers and interfaces, as well as the determination of the magnetic state of multilayer metal nanoheterostructures. The theoretical basis of this method is given, which consists in deposition on the sample top of a gadolinium layer with known parameters, one of which can be varied in a controlled manner. The scheme of the experiment is described in detail using model numerical calculations. An experimental result is given for a simple single-layer niobium sample, for which the modulus and phase of the reflection coefficient were calculated. Promising directions for improving the method and possible directions for further work are proposed. The requests for the characteristics of a compact neutron source, necessary for the optimal implementation of the proposed method, are formulated.

Sobre autores

E. Nikova

Miheev Institute of Metal Physics UB RAS

Autor responsável pela correspondência
Email: e.nikova@mail.ru
Russia, 620990, Ekaterinburg

Yu. Salamatov

Miheev Institute of Metal Physics UB RAS

Email: e.nikova@mail.ru
Russia, 620990, Ekaterinburg

E. Kravtsov

Miheev Institute of Metal Physics UB RAS; Ural Federal University

Email: e.nikova@mail.ru
Russia, 620990, Ekaterinburg; Russia, 620002, Ekaterinburg

Bibliografia

  1. Klibanov M.V., Sacks P.E. // J. Math. Phys. 1992. V. 33. № 11. P. 3813.
  2. Majkrzak C.F., Berk N.F. // Phys. Rev. B.1995. V. 52. P. 10827.
  3. de Haan V.O., van Well A.A., Adenwalla S., Felcher G.P. // Phys. Rev. B. 1995. V. 52. № 15. P. 10831.
  4. Majkrzak C.F., Berk N.F. // Phys. Rev. B. 1998. V. 58. P. 15416.
  5. Majkrzak C.F., Berk N.F., Silin V. // Phys. Rev. B. 2000. V. 283. P. 248.
  6. Kirby B.J., Kienzle P.A., Maranville B.B., Berk N.F., Krycka J., Heinrich F., Majkrzak C.F. // Curr. Opin. Colloid Interface Sci. 2012. V. 17. P. 44.
  7. Majkrzak C.F., Carpenter E., Heinrich F., Berk N.F. // J. Appl. Phys. 2011. V. 110. P. 102212.
  8. Lynn J.E., Seeger P.A. // Atomic Data Nucl. Data Tables. 1990. V. 44. Iss. 2. P. 191.
  9. Nikova E.S., Salamatov Yu.A., Kravtsov E.A., Bodnarchuk V.I., Ustinov V.V. // Physica B. 2019. V. 552. P. 58.
  10. Павлов К.А., Коник П.И., Коваленко Н.А., Кулевой Т.В., Серебренников Д.А., Субботина В.В., Павлова А.Е., Григорьев С.В. // Кристаллография. 2022. V. 67. № 1. Р. 5.
  11. Lekner J. // Exact results. In: Theory of Reflection of Electromagnetic and Particle Waves. Developments in Electromagnetic Theory and Applications, V. 3. Springer Science Business Media Dordrecht, 1987. C. 12.
  12. de Haan V.O., van Well A.A., Sacks P.E., Adenwalla S., Felcher G.P. // Phys. Rev. B. 1996. V. 221. P. 524.
  13. Majkrzak C.F., Berk N.F., Perez-Salas U.A. // Langmuir. 2003. V. 19. P. 7796.
  14. Zimmerman K.M. Advanced Analysis Techniques for X‑ray Reflectivities: Theory and Application. Karlsruhe, 2005. 190 p.
  15. Никова Е.С, Саламатов Ю.А., Кравцов Е.А., Макарова М.В., Проглядо В.В., Устинов В.В., Боднарчук В.И., Нагорный А.В. // Физика металлов и металловедение. 2019. V. 120. P. 913.
  16. Nikova E.S., Salamatov Yu.A., Kravtsov E.A., Ustinov V.V., Bodnarchuk V.I., Nagorny A.V. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 161.
  17. Nikova E.S., Salamatov Yu.A., Kravtsov E.A., Ustinov V.V. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. P. 899.
  18. Никова Е.С., Саламатов Ю.А., Кравцов Е.А., Проглядо В.В, Жакетов В.Д., Миляев М.А. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2022. № 11. C. 1. https://www.doi.org/10.31857/S1028096022110176 (в печати).
  19. Book A., Kienzle P.A. // Physica B: Condensed Matter. 2020. V. 588. P. 412181.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (46KB)
3.

Baixar (32KB)
4.

Baixar (209KB)
5.

Baixar (61KB)
6.

Baixar (67KB)

Declaração de direitos autorais © Е.С. Никова, Ю.А. Саламатов, Е.А. Кравцов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies