Rotating Water-Cooled Beryllium Target for a Compact Neutron Source

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

With the declining number of neutron sources in the world and the decommissioning of research reactors, projects to develop compact neutron sources are attracting more and more attention. The DARIA project suggests the use of a proton beam accelerated to an energy of 13 MeV, which, hitting a beryllium target, creates a neutron beam through the a nuclear reaction (p, n). The reaction yield is three neutrons per 1000 protons, so in this process most of the proton beam energy is released as heat in the target. Intense heating of a beryllium target in the absence of sufficient heat removal can lead to its destruction. A system has been developed for efficient heat removal from a beryllium target during its irradiation with a proton beam. It is a rotating water-cooled beryllium target and is capable of removing a large thermal power from the inner (water-side) surface of the target. For the proposed system, numerical simulations of the speed and pressure of the coolant were carried out. The limiting pressure leading to the destruction of the target and the flows corresponding to this limiting pressure were calculated. Thermodynamical simulations allowed us to evaluate both the average temperature of the system and the peak local (caused by short high-energy pulses) temperatures.

Sobre autores

P. Shvets

Research and Educational Center “Functional Nanomaterials”, I. Kant Baltic Federal University

Autor responsável pela correspondência
Email: pshvets@kantiana.ru
Russia, 236041, Kaliningrad

P. Prokopovich

Research and Educational Center “Functional Nanomaterials”, I. Kant Baltic Federal University

Email: pshvets@kantiana.ru
Russia, 236041, Kaliningrad

E. Fatyanov

Research and Educational Center “Functional Nanomaterials”, I. Kant Baltic Federal University

Email: pshvets@kantiana.ru
Russia, 236041, Kaliningrad

E. Clementyev

Research and Educational Center “Functional Nanomaterials”, I. Kant Baltic Federal University

Email: pshvets@kantiana.ru
Russia, 236041, Kaliningrad

A. Moroz

NRC “Kurchatov Institute” – PNPI

Email: pshvets@kantiana.ru
Russia, 188300, Gatchina

N. Kovalenko

NRC “Kurchatov Institute” – PNPI; NRC “Kurchatov Institute”

Email: pshvets@kantiana.ru
Russia, 188300, Gatchina; Russia, 123182, Moscow

A. Goihman

Research and Educational Center “Functional Nanomaterials”, I. Kant Baltic Federal University

Email: pshvets@kantiana.ru
Russia, 236041, Kaliningrad

Bibliografia

  1. Amaldi E. // Phys. Rep. 1984. V. 111. № 1–4. P. 1. https://www.doi.org/10.1016/0370-573(84)90214-X
  2. Аксенов В.Л. // Природа. 1996. № 2. С. 3.
  3. Vetter J.E. // IEEE Trans. Nucl. Sci. 1981. V. 28. № 3. P. 3455. https://www.doi.org/10.1109/TNS.1981.4332134
  4. Carpenter J.M. // EPJ Web Conf. 2020. V. 231. P. 01001. https://www.doi.org/10.1051/epjconf/202023101001
  5. Jeon B., Kim J., Lee E., Moon M., Cho S., Cho G. // Nucl. Engin. Technol. 2020. V. 52. № 3. P. 633. https://www.doi.org/10.1016/j.net.2019.08.019
  6. Yamagata Y., Hirota K., Ju J., Wang S., Morita S., Kato J., Otake Y., Taketani A., Seki Y., Yamada M., Ota H., Bautista U., Jia Q. // J. Radioanalyt. Nucl. Chem. 2015. V. 305. P. 787. https://www.doi.org/10.1007/s10967-015-4059-8
  7. Inada T., Kawachi K., Hiramoto T. // J. Nucl. Sci. Technol. 1968. V. 5. № 1. P. 22. https://www.doi.org/10.1080/18811248.1968.9732391
  8. Патент № 2 640 396 C2 (РФ). Мишень для генерации нейтронов / Кэнсэр Интеллидженс КЭА Системс, ИНК. Сиода Сигео, Накамура Масару // 2018.
  9. Патент № 2 610 301 C1 (РФ). Нейтроногенерирующая мишень / Институт ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН). Таскаев С.Ю., Баянов Б.Ф. // 2017.
  10. Willis C., Lenz J., Swenson D. // Proc. LINAC08. 2009. P. 223.
  11. Bayanov B., Belov V., Taskaev S. // J. Phys.: Conf. Ser. 2006. V. 41. P. 460. https://www.doi.org/10.1088/1742-6596/41/1/051
  12. Neutron Generators for Analytical Purposes. Vienna: International Atomic Energy Agency, 2012. P. 145.
  13. Sordo F., Fernandez-Alonso F., Terrón S., Magán M., Ghiglino A., Martinez F., Bermejo F.J., Perlado J.M. // Phys. Proced. 2014. V. 60. P. 125. https://www.doi.org/10.1016/j.phpro.2014.11.019
  14. Paul M., Tessler M., Friedman M., Halfon S., Palchan T., Weissman L., Arenshtam A., Berkovits D., Eisen Y., Eliahu I., Feinberg G., Kijel D., Kreisel A., Mardor I., Shimel G., Shor A., Silverman I. // Eur. Phys. J. A. 2019. V. 55. P. 44. https://www.doi.org/10.1140/epja/i2019-12723-5
  15. Reed C.B., Nolen J.A., Specht J.R., Novick V.J., Plotkin P. // Nucl. Phys. A. 2004. V. 746. P. 161. https://www.doi.org/10.1016/j.nuclphysa.2004.09.127
  16. Nakamura H., Agostini P., Ara K. et al. // Fusion Engin. Design. 2008. V. 83. № 7–9. P. 1007. https://www.doi.org/10.1016/j.fusengdes.2008.06.014
  17. Sekine K., Mitamura Y., Murabayashi S., Nishimura I., Yozu R., Kim D.-W. // Artificial Organs. 2003. V. 27. № 10. P. 892. https://www.doi.org/10.1046/j.1525-1594.2003.00035.x
  18. Szydlo Z., Ochoński W., Zachara B. // Tribotest. 2005. V. 11. № 4. P. 345. https://www.doi.org/10.1002/tt.3020110406
  19. Nakatsuka K. // J. Magn. Magn. Mater. 1993. V. 122. № 1–3. P. 387. https://www.doi.org/10.1016/0304-8853(93)91116-O
  20. Subbotina V.V., Pavlov K.A., Kovalenko N.A., Konik P.I., Voronin V.V., Grigoriev S.V. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 1008. P. 165462. https://www.doi.org/10.1016/j.nima.2021.165462

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (456KB)
3.

Baixar (1005KB)
4.

Baixar (328KB)
5.

Baixar (166KB)
6.

Baixar (227KB)
7.

Baixar (424KB)
8.

Baixar (341KB)

Declaração de direitos autorais © П.В. Швец, П.А. Прокопович, Е.И. Фатьянов, Е.С. Клементьев, А.Р. Мороз, Н.А. Коваленко, А.Ю. Гойхман, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies