Synthesis and Investigations of Morphology and Structure of Fe2O3 Nanocoatings on Porous Al2O3, Obtained by Oxidation of Magnetron Deposited Fe Films

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of studies of the morphology, crystal, local atomic and chemical structure of iron(III) oxide coatings on the surface of porous alumina with different morphology by scanning electron and atomic force microscopy, X-ray phase analysis, X-ray photoelectron spectroscopy, as well as fine structure spectroscopy of the near edge region are presented. X-ray absorption. Films of porous alumina were synthesized by the method of two-stage anodic oxidation of aluminum in aqueous 0.3 M solutions of sulfuric and oxalic acids. To change the pore diameter, some of the films were etched in a phosphoric acid solution. Samples of iron oxide nanocoatings were obtained by air oxidation of iron films deposited on porous alumina substrate matrices by magnetron sputtering at a temperature of 300°C for 3 hours. It is shown that oxidation leads to a twofold increase in the coating thickness of the control sample and is associated with an increase in the density of iron oxide compared to pure iron. With a change in the nanoporous structure on the surface of the substrates, the morphological features of the coatings change, which consists in the “overgrowth” of pores with iron oxide. That the control of the processes leading to such “overgrowth” will make it possible to carry out a directed change in the structure-sensitive properties of composite structures based on iron oxide.

Sobre autores

R. Valeev

Udmurt Federal Research Center of the Ural Branch of the RAS

Autor responsável pela correspondência
Email: rishatvaleev@mail.ru
Russia, 426008, Izhevsk

A. Beltiukov

Udmurt Federal Research Center of the Ural Branch of the RAS

Email: rishatvaleev@mail.ru
Russia, 426008, Izhevsk

A. Chukavin

Udmurt Federal Research Center of the Ural Branch of the RAS

Email: rishatvaleev@mail.ru
Russia, 426008, Izhevsk

M. Eremina

Udmurt Federal Research Center of the Ural Branch of the RAS

Email: rishatvaleev@mail.ru
Russia, 426008, Izhevsk

V. Kriventsov

Boreskov's Catalysis Institute of Siberian Branch of the RAS

Email: rishatvaleev@mail.ru
Russia, 630090, Novosibirsk

Bibliografia

  1. Chen C., Ge J., Gao Y., Lei C., Cui J., Zeng J., Gao M. // Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2022. V. 14. P. 1740.
  2. https://www.doi.org/10.1002/wnan.1740
  3. Montiel Schneider M.G., Martín M.J., Otarola J., Vakarelska E., Simeonov V., Lassalle V., Nedyalkova M. // Pharmaceutics. 2022. V. 14. P. 204.
  4. https://www.doi.org/10.3390/pharmaceutics14010204
  5. Kumar P., Tomar V., Kumar D., Kumar Joshi R., Nemival M. // Tetrahedron. 2022. V. 106–107. P. 132641. https://www.doi.org/10.1016/j.tet.2022.132641
  6. Yakasai F., Jaafar M.Z., Bandyopadhyay S., Agi A., Sidek M.A. // J. Petroleum Sci. Engineering. 2022. V. 208. P. 109438. https://www.doi.org/10.1016/j.petrol.2021.109438
  7. Powell C.D., Lounsbury A.W., Fishman Z.S., Coonrod C.L., Gallagher M.J., Villagran D., Zimmerman J.B., Pfefferle L.D., Wong M.S. // Nano Convergence. 2021. V. 8. P. 8. https://www.doi.org/10.1186/s40580-021-00258-7
  8. Song N., Jiang H., Cui T., Chang L., Wang X. // Micro Nano Lett. 2012. V. 7. P. 943.
  9. https://www.doi.org/10.1049/mnl.2012.0631
  10. Sun B., Horvat J., Kim H.S., Kim W.-S., Ahn J., Wang G. // J. Phys. Chem. C. 2010. V. 114. P. 18753.
  11. https://www.doi.org/10.1021/jp102286e
  12. Kumar A., Kamlesh Y. // Materials Res. Express 2017. V. 4. P. 075003.
  13. https://www.doi.org/10.1088/2053-1591/aa75e9
  14. Napolskii K.S., Roslyakov I.V., Romanchuk A.Y., Kapitanova O.O., Mankevich A.S., Lebedev V.A., Eliseev An.A. // J. Mater. Chem. 2012. V .22. P. 11922.
  15. https://www.doi.org/10.1039/C2JM31710A
  16. Roslyakov I.V., Chumakov A.P., Eliseev An.A., Leontiev A.P., Konovalov O.V., Napolskii K.S. // J. Phys. Chem. C. 2021. V. 125. P. 9287. https://www.doi.org/10.1021/acs.jpcc.1c01482
  17. Ruiz-Clavijo A., Caballero-Calero O., Martín-Gonzá- lez M. // Nanoscale. 2021. V. 13. P. 2227.
  18. https://www.doi.org/10.1039/D0NR07582E
  19. Валеев Р.Г., Тригуб А.Л., Зубавичус Я.В., Гильмутдинов Ф.З., Елькин И.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 8. С. 103.
  20. https://www.doi.org/10.7868/S0207352817080145
  21. Чукавин А.И., Валеев Р.Г., Зубавичус Я.В., Тригуб А.Л., Бельтюков А.Н. // Журн. структурной химии. 2017. Т. 58. № 6. С. 1284. https://www.doi.org/10.15372/JSC2017062.
  22. Elmekawy A.H.A, Iashina E.G., Dubitskiy I.S., Sotnichuk S.V., Bozhev I.V., Kozlov D.A., Napolskii K.S., Menzel D., Mistonov A.A. // J. Magnetism Magnetic Mater. 2021. V. 532. P. 167951. https://www.doi.org/10.1016/j.jmmm.2021.167951
  23. Валеев Р.Г., Алалыкин А.С. // Российские нанотехнологии. 2019. Т. 14. С. 58. https://www.doi.org/10.21517/1992-7223-2019-7-8-58-64
  24. Котенев В.А., Киселев М.Р., Высоцкий В.В. // Физикохимия поверхности и защита материалов. 2016. Т. 52. С. 510. https://www.doi.org/10.7868/S0044185616050156
  25. Отс А.А. Коррозия и износ поверхностей нагрева котлов. Москва: Энергоатомиздат, 1987. 272 с.
  26. Klementev K.V. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. P. 299. https://www.doi.org/10.1016/S0168-9002(99)00710-X
  27. Wagner C.D., Rigs W.M, Davis L.E., Moulder J.F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy / Ed. Muilenberg G.E. Eden Prairie: Perkin-Elmer, 1979.
  28. Кубашевский О., Гопкинс Б. Окисление металлов и сплавов. Москва: Металлургия, 1965. 430 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (63KB)
3.

Baixar (371KB)
4.

Baixar (2MB)
5.

Baixar (1MB)
6.

Baixar (1MB)
7.

Baixar (92KB)

Declaração de direitos autorais © Р.Г. Валеев, А.Н. Бельтюков, А.И. Чукавин, М.А. Еремина, В.В. Кривенцов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies